# Planetary gears.

Standard series & custom engineered solutions.





## - Our motto -

Customers trust us as their preferred partner for gear and drive engineering. We stand for quality, innovation, efficiency and reliability.



# Your satisfaction is our ultimate goal.

Our services in every aspect of the planetary gear.

Framo Morat is not only known for its comprehensive manufacturing Reliability expertise. Our customers also revere us as experienced partners in Our planetary gears accomplish reliable performance in their numedrive technology. This expertise is the foundation of our planetary gear rous applications. Being your reliable partner and supplier is our conseries. stant driving force.

We place great importance on your flexibility in the configuration and application of our planetary gears. Being faithful to our motto customer satisfaction is always a priority.

#### Quality

Our high quality standards apply to all our planetary gearbox series. These include especially high gearing quality, low backlash and long Or do you require an individual solution? Together we will develop innoservice life. vative drive solutions of tomorrow.

#### Innovation

Fast response to customer requests and constant further development of our planetary gears is our driving force. Do you have special requirements? We will gladly elaborate with you innovative solutions and drive concepts.

#### Profitability

Planetary gears are known for their high efficiency. Owing to the high manufacturing quality of our gearbox series we offer you an excellent price-performance ratio.

#### Design

The selection of an appropriate planetary gear for your individual application. Contact us by phone or via the inquiry form on www.framo-morat.com

#### Short delivery time

Small quantities available on short notice. Delivery time for larger quantities or special requests has to be checked individually

#### CAD drawings

Drawings for all series are available on request

## Flexibility

For customized solutions we draw from a large range of single components. Depending on demand they may be combined for you in a flexible way

#### Custom engineered solutions

#### Repair service

We will accompany you from the specification to the series! We will employ decades of experience in development of custom engineered drives

Production

Do you have individual requirements? We integrate the entire process chain - metal quality control & assembling - on our own pre

#### Flexibility

We offer you the highest form of flexibility in motor integration through our versatile product range with mounting flanges and reduction sleeves. The results are drive solutions for industries like mechanical engineering, medical technology, energy generation or building technology.

#### What can we do for you?

We are glad to be personally there for you and we look forward to common challenges and projects:

#### Phone +49 7657 88 303

#### E-Mail drives@framo-morat.com

For further information visit **www.framo-morat.com** 

We will take over inspection and maintenance for you

|          | Personal contacts                                                                                               |
|----------|-----------------------------------------------------------------------------------------------------------------|
| vorking, | We support you internationally! We look forward to receiving questions about planetary gears via phone or email |

#### Overview

## Planetary gears • Overview

|                            |       |                                 | High-End                              |                                        | High-End                            | l Economy                                   |
|----------------------------|-------|---------------------------------|---------------------------------------|----------------------------------------|-------------------------------------|---------------------------------------------|
| Diameter<br>Gearbox (mm)   |       | GSD<br>47 / 64 / 90 / 110 / 140 | GSB<br>44 / 62 / 90 / 120 / 142 / 180 | GSBL<br>44 / 62 / 90 / 120 / 142 / 180 | GSN<br>60 / 80 / 115                | GFE<br>50 / 70 / 90 / 120 / 145 / 180 / 220 |
| Nominal output torque (Nm) |       | 17 - 683                        | 14 - 1266                             | 14 - 1266                              | 26 - 182                            | 13 - 1562                                   |
| Acceleration torque (Nm)   |       | 30 - 1229                       | 25 - 2279                             | 25 - 2279                              | 47 - 327                            | 24 - 2812                                   |
| Emergency stop torque (Nm) |       | 50 - 2048                       | 41 - 3799                             | 41 - 3799                              | 79 - 545                            | 40 - 4686                                   |
|                            | 1-st. | 4, 5, 7, 10                     | 3, 4, 5, 7, 8, 10                     | 3, 4, 5, 7, 10, 16, 20                 | 3, 4, 5, 7, 10                      | 3, 4, 5, 7, 10                              |
| Transmission               | 2-st. | 20, 25, 35, 40, 50, 70, 100     | 15, 20, 25, 30, 35, 50, 60, 70, 100   | 25, 30, 50, 70, 100, 140, 180, 200     | 15, 20, 25, 30, 35, 40, 50, 70, 100 | 15, 20, 25, 30, 35, 40, 50, 70, 100         |
|                            | 1-st. | <=3 (opt. <=1)                  | <=3 (opt. <=1)                        | <=4 (opt. <=2)                         | <=7                                 | <=7                                         |
| Backlash (arcmin)          | 2-st. | <=5 (opt. <=3)                  | <=5 (opt. <=3)                        | <=7 (opt. <=4)                         | <=10                                | <=10                                        |

† GSD

- Compact design . Highest torsional rigidity
- High permissable radial .
- & axial forces

**† GSB** 

- Low backlash for high precision, standard up to <=3 arcmin, optional up to
- <= 1arcmin High torque level
- Best corrosion protection for complete housing including output side

#### **† GSBL** Right angle version for space

-

- restricted applications High torque level
- Up to ratio i = 200 in 2-stage version



- Low noise level due to ground helical gearing
- High power density
- Protection class IP65



# **†**GFE

- Big housing sizes up to 220 mm
- Max. input speed up to 10,000 rpm
- 30,000 h life time



## Selection criteria

| Gearbox characteristics      | GSD                                    | GSB     | GSBL         | GSN   | GFE          | Custom |
|------------------------------|----------------------------------------|---------|--------------|-------|--------------|--------|
| Rotational speed             | $\checkmark$ $\checkmark$ $\checkmark$ | V V V   | V V V        | V V V | <b>V V V</b> | ✓ ✓ ✓  |
| Torque                       | $\checkmark$ $\checkmark$ $\checkmark$ | ~ ~ ~ ~ | V V V        | ✓ ✓   | V V          |        |
| Range of transmission ratios | V V                                    | V V     | <b>v</b> v v | V V   | ✓ ✓          | ✓ ✓ ✓  |
| Backlash                     | $\checkmark$ $\checkmark$ $\checkmark$ | V V V   | <b>v</b> v v | ✓ ✓   | ✓ ✓          |        |
| Lifetime                     | $\checkmark$ $\checkmark$ $\checkmark$ | V V V   | V V V        | V V V | V V V        |        |
| Protection class             | $\checkmark$ $\checkmark$ $\checkmark$ | V V V   | V V V        | V V V | V V V        | ✓ ✓ ✓  |
| Radial force                 | $\checkmark$ $\checkmark$ $\checkmark$ | V V     | ✓ ✓          | ✓ ✓   | ✓ ✓          |        |
| Axial force                  | $\checkmark$ $\checkmark$ $\checkmark$ | V V     | ✓ ✓          | V V   | ✓ ✓          | ✓ ✓ ✓  |
| Noise                        | $\checkmark$ $\checkmark$ $\checkmark$ | V V V   | ✓ ✓          | V V V | ✓ ✓          | ✓ ✓ ✓  |
| Weight                       | V V                                    | V V     | ✓ <b>√</b>   | ✓ ✓   | ✓            |        |



#### Customer-specific planetary gears

... individually developed for you in accordance with the following parameters:

- Gearbox sizes
- Gear stages
- Gear ratios
- Gear types
- Bearings
- Materials
- Lubrication Interfaces
- etc.

### Customer-specific planetary gears

- Individualized design of material, diameter, bearing, tooth . width, etc. on each planetary carrier
- Error-free connection to all interfaces
- . Drive integration into your entire system taking into account the mechanics, electronics and control technology



# The G-series.

Low-backlash planetary gears - compact and highly precise.

## Full needle bearing

All lines have a full needle bearing, which has been especially designed for high torques.

## Bearing system

Standard use of maximum preloaded deep groove ball bearings. Optionally, the GSD line is also available with taper roller bearings to accommodate higher radial and axial forces.

## One-piece planetary carrier

All planetary carriers are manufactured as a cage made from solid material. This increases quiet operating characteristics while at the same time improving positioning accuracy and reducing backlash.

## Sun pinion bearing system

In the high-end gearbox range, the sun pinions are fitted with an additional bearing system in order to ensure quieter operating behavior.

## Sealing

An additional shaft sealing ring ensures maximum dust and splash water protection in accordance with protection class IP65 in all lines.

## Housing

The housings of the high end range are designed from a one-piece, robust housing. This improves the gear rigidity and enables the absorption of higher loads.

## G-series - High-End & High-End Economy range

The G-series includes the high-end gearbox lines GSD (flange gear), GSB (inline) and GSBL (angle gear) as well as the high-end economy GSN and GFE lines.

Particularly suitable applications for the G-series are those which place the highest demands on positioning accuracy, operating noises, running smoothness, bending rigidity and transmitted torque. The G-series is designed to meet the highest production requirements-all planetary gear sets are equipped with precision ground helical gearing, single-piece planetary carriers and full needle bearings. Resolutely applied quality assurance measures consistently ensure that all high quality requirements are fulfilled at all times.

Particularly in the case of medium and large-volume projects, custom adaptations can also be made. We would be happy to develop your customized gearbox in accordance with your individual specifications.

## Definition of serial number

| Internal<br>Group No. |   | Туре | Size | Bearing |   | Backlash<br>level |   | Input hollow<br>shaft |   | Ratio |
|-----------------------|---|------|------|---------|---|-------------------|---|-----------------------|---|-------|
| 3                     | - | GSD  | 090  | Т       | - | 1                 | - | 11                    | - | 100   |
| 3                     | - | GSB  | 090  |         | - | 1                 | - | 19                    | - | 005   |
| 3                     | - | GSBL | 120  |         | - | 1                 | - | 28                    | - | 010   |
| 3                     | - | GSN  | 060  |         | - |                   | - | 14                    | - | 025   |
| 3                     | - | GFE  | 090  |         | - |                   | - | 19                    | - | 005   |

Bearing: with T = Tapered bearing; without T = Ball bearing Backlash level: 1 = Standard; 0 = Reduced backlash Input hollow shaft diam. = Max. motorshaft diam. = D9 in gearbox dimensions

## Helical cut components

All lines are equipped with ground, helical-cut precision components, which ensure low operating noise, very quiet operating characteristics and above-average torque absorption.

## Slotted hollow input shaft

Due to the high surface pressure, the slotted, two-piece hollow input shaft represents the ideal connection between the motor shaft and gearbox.

## Space-optimized 2 stage design

The GSD, GSB & GSBL high-end gearbox lines are constructed in a space-optimized, two-stage design. Due to the lower torque values, the input stage is dimensionally smaller than the output stage.

## Lubrication

The use of a synthetic fluid grease for optimal service life lubrication renders a grease refill unnecessary.

# Planetary gears GSD

High-end gearbox with the highest positioning precision for dynamic applications.

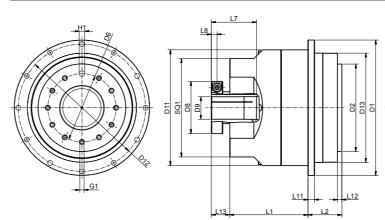
Its short design makes the GSD line the ideal high-end gearbox for space restricted applications. The flange output produces highest torsional rigidity. The low standard backlash of the GSD line makes it the perfect fit for highly dynamic applications where highest positioning and speed accuracy is required.

#### You benefit from:

- Short construction
- Highest torsional rigidity
- High permissible radial and axial forces
- Low backlash,
- standard up to <=3 arcmin, optional up to <= 1 arcmin
- Low noise level
- Protection class IP 65





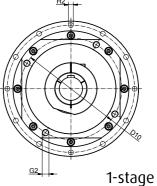

One-piece output flange / planetary carrier High torsional rigidity and exact positioning precision.

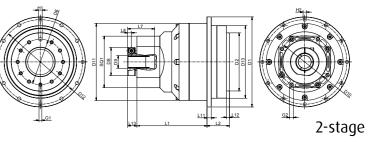
#### Typical application example



#### Wheel hub drive for AGVs

Automated guided vehicles (AGV) distribute picked goods in roomy warehouse and trucking company halls. They usually work self-sufficiently. The AGVs are especially productive and economical if they are allowed to reach long travel distances and travel times without requiring repeated recharging of the energy storage units. This places special demands on construction and design. In particular, the vehicles and the installed components in it have to be lightweight and compact. Thanks to high bending rigidity, the high absorption of axial and radial loads and the compact design, the GSD line offers numerous advantages.





## Planetary gears GSD • Dimensions

| Gearbox characteristics          |                 |    | Stage | GSD047       | GSD064     | GSD090      | GSD110       | GSD140      |
|----------------------------------|-----------------|----|-------|--------------|------------|-------------|--------------|-------------|
| Housing diameter                 | D <sub>1</sub>  |    |       | 72           | 86         | 118         | 146          | 179         |
| Centering diameter output        | D <sub>2</sub>  | h7 |       | 28           | 40         | 63          | 80           | 100         |
| Hole circle diameter output      | D <sub>6</sub>  |    |       | 20           | 31.5       | 50          | 63           | 80          |
| demaine autom diameter           |                 |    | 1     | 27           | 40         | 49          | 67           | 80          |
| Clamping system diameter         | D <sub>8</sub>  |    | 2     | 27           | 29         | 40          | 49           | 67          |
| and ballow shafe diamates        |                 | F7 | 1     | 11           | 19         | 24          | 28           | 38          |
| nput hollow shaft diameter       | D <sub>9</sub>  |    | 2     | 11           | 14         | 19          | 24           | 32          |
| Iole circle diameter input       | <b>_</b>        |    | 1     | 42           | 60.5       | 90          | 120          | 143         |
| tole circle diameter input       | D <sub>10</sub> |    | 2     | 42           | 42         | 60.5        | 90           | 120         |
| lousing diameter input           | D <sub>11</sub> | h7 |       | 59           | 70         | 98          | 125          | 156         |
| lole circle diameter (2) output  | D <sub>12</sub> |    |       | 67           | 79         | 109         | 135          | 168         |
| Dutput flange diameter           | D <sub>13</sub> | h7 |       | 47           | 64         | 90          | 1 10         | 140         |
| leurie e lee eth                 |                 |    | 1     | 33.5         | 46.5       | 69.5        | 80.5         | 103         |
| lousing length                   | L               |    | 2     | 61.5         | 68.5       | 94          | 125.5        | 161         |
| haft length output               | L <sub>2</sub>  |    |       | 23.5         | 24.5       | 37          | 37           | 40          |
| tay input logath mater shaft     |                 |    | 1     | 27           | 28         | 49.5        | 57           | 100         |
| Max. input length motor shaft    | L <sub>7</sub>  |    | 2     | 21           | 25.5       | 27.5        | 50           | 57          |
| Distance to center of screw      |                 |    | 1     | 4.5          | 6          | 7           | 9            | 10.5        |
|                                  | L <sub>8</sub>  |    | 2     | 4.5          | 5          | 6           | 7            | 9           |
| lange thickness output           | L <sub>11</sub> |    |       | 4            | 5          | 7           | 8            | 10          |
| lange length output              | L <sub>12</sub> |    |       | 1.5          | 4          | 6           | 6            | 6           |
| Distance clamping ring - housing |                 |    | 1     | 10           | 15.5       | 18          | 25.5         | 25.5        |
| istance clamping ring - nousing  | L <sub>13</sub> |    | 2     | 10           | 11.5       | 15.5        | 18           | 25.5        |
| Square housing                   | 60              |    | 1     | 44           | 62         | 98          | 126          | 156         |
|                                  | SQ1             |    | 2     | 44           | 44         | 62          | 90           | 120         |
| Ain. mounting thread x depth     | G <sub>1</sub>  |    |       | 4 x M3 x 6.5 | 7 x M5 x 8 | 7 x M6 x 12 | 11 x M6 x 12 | 11 x M8 x 1 |
| tin mounting thread y death      |                 |    | 1     | M4 x 8       | M5 x 10    | M5 x 10     | M8 x 16      | M8 x 16     |
| Min. mounting thread x depth     | G <sub>2</sub>  |    | 2     | M4 x 8       | M4 x 8     | M5 x 10     | M6 x 12      | M8 x 16     |
| tole bore                        | H,              | H7 |       | 3 x 4        | 5 x 6      | 6 x 6       | 6 x 7        | 8 x 8       |
| Hole bore                        | H <sub>2</sub>  |    |       | 8 x 3.4      | 8 x 4.5    | 8 x 5.5     | 8 x 5.5      | 12 x 6.6    |

Find more information regarding flanges and reduction sleeves for all common motor types on pages 48-50.

ISO-projection metric





#### Planetary gears GSD • High-End range

|                                       |                     |           | GSD047 | GSD064  | GSD090                  | GSD110    | GSD140 | Stage |
|---------------------------------------|---------------------|-----------|--------|---------|-------------------------|-----------|--------|-------|
| Service lifetime <sup>*1</sup>        | t                   | h         |        |         | 30000                   |           | 1      |       |
| Nominal input speed                   | n,                  | rpm       | 5000   | 4500    | 4500                    | 4000      | 3500   |       |
| Max. input speed                      | N <sub>1 max.</sub> | rpm       | 10000  | 10000   | 8000                    | 8000      | 6500   |       |
| Standard backlash                     |                     | arcmin    |        |         | <= 3 (opt. <=1)         |           |        | 1     |
|                                       | Jt                  | archini   |        |         | <= 5 (opt. <=3)         |           |        | 2     |
| Noise level <sup>*2</sup>             | Q <sub>q</sub>      | dB (A)    | <= 56  | <= 58   | <= 60                   | <= 63     | <= 65  |       |
| Efficiency                            |                     | %         |        |         | >= 97                   |           |        | 1     |
| Enciency                              | η                   | 3/0       |        |         | >= 94                   |           |        | 2     |
| Protection class                      |                     |           |        |         | IP65                    |           |        |       |
| Torsional rigidity                    | C,                  | Nm/arcmin | 6      | 14      | 30                      | 86        | 155    |       |
| Max. radial force (ball bearing)*3    | F <sub>2r</sub>     | N         | 1530   | 1890    | 6345                    | 9540      | 10550  |       |
| Max. axial force (ball bearing)*3     | F <sub>2a</sub>     | N         | 1020   | 1260    | 4230                    | 6360      | 7035   |       |
| Max. radial force (tapered bearing)*3 | F <sub>2r</sub>     | N         | -      | -       | 6345                    | 9540      | 10550  |       |
| Max. axial force (tapered bearing)*3  | F <sub>2a</sub>     | N         | -      | -       | 7330                    | 11500     | 18600  |       |
| Operating temperature                 | Τ <sub>B</sub>      | °C        |        |         | -25°C - +90°C           |           |        |       |
| Lubrication                           |                     |           |        | Synthet | ic grease (lifetime-lub | pricated) |        |       |
| Waight with flaggo*4                  | _                   | ka        | 0.7    | 1.4     | 4.2                     | 7.4       | 13.9   | 1     |
| eight with flange <sup>*4</sup>       | m <sub>g</sub>      | kg        | 1      | 1.9     | 4.8                     | 9.4       | 16.7   | 2     |
| Mounting position                     |                     |           |        |         | Any                     |           |        |       |

| Mass moment of inertia              |                |                   | GSD047 | GSD064 | GSD090 | GSD110 | GSD140 | Ratio | Stage |
|-------------------------------------|----------------|-------------------|--------|--------|--------|--------|--------|-------|-------|
|                                     |                |                   | 0.03   | 0.13   | 0.47   | 2.75   | 7.46   | 4     | 1     |
|                                     |                |                   | 0.03   | 0.12   | 0.45   | 2.7    | 7.41   | 5     | 1     |
|                                     |                |                   | 0.03   | 0.12   | 0.45   | 2.64   | 7.12   | 7     | 1     |
|                                     |                |                   | 0.03   | 0.12   | 0.43   | 2.56   | 7.01   | 10    | 1     |
|                                     |                |                   | 0.03   | 0.03   | 0.15   | 0.45   | 2.7    | 20    | 2     |
| Nass moment of inertia <sup>®</sup> | J <sub>1</sub> | kgcm <sup>2</sup> | 0.03   | 0.03   | 0.15   | 0.45   | 2.7    | 25    | 2     |
|                                     |                |                   | 0.03   | 0.03   | 0.15   | 0.45   | 2.7    | 35    | 2     |
|                                     |                |                   | 0.03   | 0.03   | 0.15   | 0.45   | 2.7    | 40    | 2     |
|                                     |                |                   | 0.03   | 0.03   | 0.14   | 0.4    | 2.6    | 50    | 2     |
|                                     |                |                   | 0.03   | 0.03   | 0.14   | 0.4    | 2.6    | 70    | 2     |
|                                     |                |                   | 0.03   | 0.03   | 0.14   | 0.4    | 2.6    | 100   | 2     |

<sup>\*1</sup> Load factor K<sub>A</sub>=1, n<sub>2</sub>=100 rpm ,at room temperature T=20°C in new condition
<sup>\*2</sup> Sound pressure level at 1 m distance, measured for an input speed of 3000 rpm without load
<sup>\*3</sup> On the center of the output shaft
<sup>\*4</sup> Deviation of up to 10 % possible
<sup>\*5</sup> Service life: 30,000 h, n<sub>2</sub>=100 rpm
<sup>\*6</sup> Max 1000 cycles per hour. Acceleration torque proportion < 5% of the total operation time</li>
<sup>\*7</sup> Max 1000 cycles over the gear service life
<sup>\*8</sup> Related to the input shaft

| Output torques             |                   |    | GSD047 | GSD064 | GSD090 | GSD110 | GSD140 | Ratio | Stage |
|----------------------------|-------------------|----|--------|--------|--------|--------|--------|-------|-------|
|                            |                   |    | 23     | 63     | 168    | 352    | 683    | 4     | 1     |
|                            |                   |    | 21     | 53     | 163    | 350    | 649    | 5     | 1     |
|                            |                   |    | 20     | 49     | 149    | 324    | 602    | 7     | 1     |
|                            |                   |    | 17     | 45     | 143    | 309    | 576    | 10    | 1     |
|                            |                   |    | 23     | 63     | 168    | 352    | 683    | 20    | 2     |
| Nominal output torque*5    | T <sub>2N</sub>   | Nm | 21     | 53     | 163    | 350    | 649    | 25    | 2     |
|                            |                   |    | 20     | 49     | 149    | 324    | 602    | 35    | 2     |
|                            |                   |    | 23     | 63     | 168    | 352    | 683    | 40    | 2     |
|                            |                   |    | 21     | 53     | 163    | 350    | 649    | 50    | 2     |
|                            |                   |    | 20     | 49     | 149    | 324    | 602    | 70    | 2     |
|                            |                   |    | 17     | 45     | 143    | 309    | 576    | 100   | 2     |
|                            |                   |    |        | ·      |        | ·      | ·      |       |       |
|                            |                   |    | 42     | 113    | 302    | 633    | 1229   | 4     | 1     |
|                            |                   |    | 38     | 95     | 293    | 629    | 1168   | 5     | 1     |
|                            |                   |    | 36     | 89     | 268    | 584    | 1083   | 7     | 1     |
|                            |                   |    | 30     | 81     | 257    | 556    | 1038   | 10    | 1     |
|                            |                   |    | 42     | 113    | 302    | 633    | 1229   | 20    | 2     |
| Max. acceleration torque*6 | T <sub>2B</sub>   | Nm | 38     | 95     | 293    | 629    | 1168   | 25    | 2     |
|                            |                   |    | 36     | 89     | 268    | 584    | 1083   | 35    | 2     |
|                            |                   |    | 42     | 113    | 302    | 633    | 1229   | 40    | 2     |
|                            |                   |    | 38     | 95     | 293    | 629    | 1168   | 50    | 2     |
|                            |                   |    | 36     | 89     | 268    | 584    | 1083   | 70    | 2     |
|                            |                   |    | 30     | 81     | 257    | 556    | 1038   | 100   | 2     |
|                            |                   | 1  |        | 1      |        |        |        |       |       |
|                            |                   |    | 69     | 189    | 504    | 1055   | 2048   | 4     | 1     |
|                            |                   |    | 63     | 158    | 488    | 1049   | 1947   | 5     | 1     |
|                            |                   |    | 60     | 148    | 447    | 973    | 1805   | 7     | 1     |
|                            |                   |    | 50     | 135    | 428    | 926    | 1729   | 10    | 1     |
|                            |                   |    | 69     | 189    | 504    | 1055   | 2048   | 20    | 2     |
| Emergency stop torque*7    | T <sub>2Not</sub> | Nm | 63     | 158    | 488    | 1049   | 1947   | 25    | 2     |
|                            |                   |    | 60     | 148    | 447    | 973    | 1805   | 35    | 2     |
|                            |                   |    | 69     | 189    | 504    | 1055   | 2048   | 40    | 2     |
|                            |                   |    | 63     | 158    | 488    | 1049   | 1947   | 50    | 2     |
|                            |                   |    | 60     | 148    | 447    | 973    | 1805   | 70    | 2     |
|                            |                   |    | 50     | 135    | 428    | 926    | 1729   | 100   | 2     |

#### Planetary gears GSD • High-End range

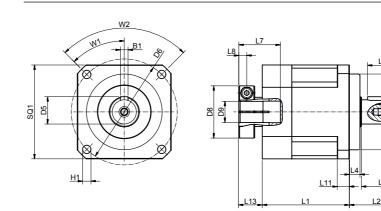
# Planetary gears GSB

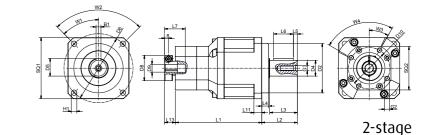
Low-backlash high-end gears set new standards in torque.

Our GSB line stands for high performance in combination with low backlash and high precision. Helical gears ensure a minimum noise level and smooth running. The GSB line aligns economic efficiency with flexibility and is your perfect fit for a multitude of applications.

#### You benefit from:

- Low backlash for high precision,
- standard up to <=3 arcmin, optional up to <= 1 arcmin</li>High torque level
- Best corrosion protection also for output side
- Low noise level up to <56 dB (A)</li>
- Long product lifetime up to 30,000 h
- High torsional rigidity



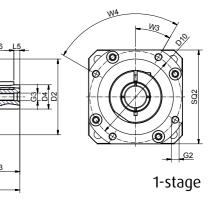


#### Typical application example



#### Axis drive for laser cutting machines

The GSB090 planetary gear, with a gear ratio of i=10, is used as a machine axis drive (x- and y-axis) in laser cutting machines. A servo motor and a rack and pinion complete the unit. Thanks to the nominal input speed of 4,000 rpm and the maximum input speed of 8,000 rpm, the gearbox is ideally suited for use in fast, dynamic laser cutting machines. Due to the high positioning accuracy and high dynamic driveability, the GSB line is the ideal choice for applications of this sort.






## Planetary gears GSB • Dimensions

| Gearbox characteristics            |                 |     | Stage | GSB044  | GSB062  | GSB090  | GSB120   | GSB142   | GSB180   |
|------------------------------------|-----------------|-----|-------|---------|---------|---------|----------|----------|----------|
| Centering diameter output          | D <sub>2</sub>  | h7  |       | 35      | 50      | 80      | 1 10     | 130      | 160      |
| Output shaft diameter              | D4              | h6  |       | 13      | 16      | 22      | 32       | 40       | 55       |
| Shaft height including feather key | D <sub>5</sub>  |     |       | 15      | 18      | 24.5    | 35       | 43       | 59       |
| Hole circle diameter output        | D <sub>6</sub>  |     |       | 50      | 70      | 100     | 130      | 165      | 215      |
| Classica sustant diamatan          |                 |     | 1     | 27      | 40      | 49      | 67       | 80       | 107      |
| Clamping system diameter           | D <sub>8</sub>  |     | 2     | 27      | 27      | 40      | 49       | 67       | 80       |
| Mary materials at a feedback       |                 | F7  | 1     | 11      | 19      | 24      | 28       | 35       | 55       |
| Max. motor shaft diameter          | D <sub>9</sub>  | F7  | 2     | 11      | 11      | 19      | 24       | 28       | 35       |
| Under single discussion in suit    |                 |     | 1     | 42      | 60.5    | 90      | 120      | 145      | 186      |
| Hole circle diameter input         | D <sub>10</sub> |     | 2     | 42      | 42      | 60.5    | 90       | 120      | 145      |
| Usersia a las ath                  |                 |     | 1     | 53      | 65.5    | 90      | 104.5    | 133      | 172      |
| Housing length                     | L,              |     | 2     | 79      | 87.5    | 111     | 149.5    | 171      | 217      |
| Shaft length output                | L <sub>2</sub>  |     |       | 26      | 36      | 48      | 65       | 92       | 106      |
| Shaft length from shoulder         | L <sub>3</sub>  |     |       | 21      | 29      | 38      | 53       | 77       | 86       |
| Centering depth output             | L <sub>4</sub>  |     |       | 5       | 7       | 10      | 12       | 15       | 20       |
| Distance from shaft end            | L <sub>5</sub>  |     |       | 2.5     | 4       | 3       | 5        | 5        | 6        |
| Feather key length                 | L <sub>6</sub>  |     |       | 15      | 20      | 30      | 40       | 65       | 70       |
| Max issue longth motor chaft       |                 |     | 1     | 21      | 27.5    | 50      | 57       | 74.5     | 103      |
| Max. input length motor shaft      | L <sub>7</sub>  |     | 2     | 21      | 21      | 27.5    | 50       | 57       | 74.5     |
| Distance to conter of creaw        |                 |     | 1     | 4.5     | 6       | 7       | 9        | 10.5     | 11       |
| Distance to center of screw        | L <sub>8</sub>  |     | 2     | 4.5     | 4.5     | 6       | 7        | 9        | 10.5     |
| Flange thickness output            | L <sub>11</sub> |     |       | 5       | 8       | 10      | 12       | 15       | 16       |
| Distance clamping ring - housing   |                 |     | 1     | 11      | 15.5    | 17.5    | 25.5     | 25.5     | 34       |
| Distance clamping ring - nousing   | L <sub>13</sub> |     | 2     | 11      | 11      | 15.5    | 17.5     | 25.5     | 25.5     |
| Square housing output              | SQ1             |     |       | 44      | 62      | 90      | 120      | 142      | 180      |
| Cause hauring input                | 80              |     | 1     | 44      | 62      | 90      | 120      | 142      | 180      |
| Square housing input               | SQ <sub>2</sub> |     | 2     | 44      | 44      | 62      | 90       | 120      | 142      |
| Feather key width                  | B <sub>1</sub>  | h9  |       | 5       | 5       | 6       | 10       | 12       | 16       |
| Min. mounting thread x depth       |                 | 4 × | 1     | M4 x 8  | M5 x 11 | M6 x 12 | M8 x 16  | M10 x 20 | M12 x 24 |
| min. mounting thread x depth       | G <sub>2</sub>  | 4 x | 2     | M4 x 8  | M4 x 8  | M5 x 11 | M6 x 12  | M8 x 16  | M10 x 20 |
| Min. mounting thread x depth       | G3              |     |       | M4 x 11 | M5 x 14 | M8 x 20 | M10 x 23 | M12 x 28 | M14 x 32 |
| Hole bore                          | H <sub>1</sub>  | 4 x |       | 4.5     | 5.5     | 6.8     | 9        | 11       | 13       |
| Angle in °                         | W <sub>1</sub>  |     |       | 45      | 45      | 45      | 45       | 45       | 45       |
| x times angle in °                 | W <sub>2</sub>  |     |       | 4 x 90  | 4 x 90  | 4 x 90  | 4 x 90   | 4 x 90   | 4 x 90   |
| Angle in °                         | W <sub>3</sub>  |     |       | 30      | 30      | 30      | 30       | 30       | 30       |
| x times angle in °                 | W4              |     |       | 4 x 90  | 4 x 90  | 4 x 90  | 4 x 90   | 4 x 90   | 4 x 90   |

Find more information regarding flanges and reduction sleeves for all common motor types on pages 48-50.

ISO-projection metric



#### Planetary gears GSB • High-End range

|                                  |                     |           | GSB044   | GSB062     | GSB090     | GSB120              | GSB142       | GSB180       | Sta      | ige   |
|----------------------------------|---------------------|-----------|----------|------------|------------|---------------------|--------------|--------------|----------|-------|
| Service lifetime <sup>*1</sup>   | t                   | h         |          |            | 30         | 000                 |              | •            |          |       |
| Nominal input speed              | n,                  | rpm       | 5000     | 5000       | 4000       | 4000                | 3000         | 3000         |          |       |
| Max. input speed                 | N <sub>1 max.</sub> | rpm       | 10000    | 10000      | 8000       | 8000                | 6000         | 6000         |          |       |
| Standard backlash                | j,                  | arcmin    |          |            |            | opt. <= 1)          |              |              | 1        |       |
| Noise level <sup>*2</sup>        | Q                   | dB (A)    | <= 56    | <= 58      | <= 5 (0    | opt. <= 3)<br><= 63 | <= 65        | <= 67        | 2        | 2     |
|                                  |                     |           |          |            | 1          | 97                  |              |              | 1        | 1     |
| Efficiency                       | η                   | %         |          |            | >=         | 94                  |              |              | 2        | 2     |
| Protection class                 |                     |           |          |            | IP         | 65                  |              |              |          |       |
| Torsional rigidity               | C <sub>t</sub>      | Nm/arcmin | 3        | 7          | 14         | 27                  | 60           | 145          |          |       |
| Max. radial force*3              | F <sub>2r</sub>     | N         | 780      | 1530       | 3250       | 6800                | 9400         | 15600        |          |       |
| Max. axial force*3               | F <sub>2a</sub>     | N         | 390      | 765        | 1625       | 3700                | 4700         | 7800         |          |       |
| Operating temperature            | Τ <sub>β</sub>      | °C        |          |            | -25 C -    | +90°C               | d)           |              |          |       |
|                                  |                     |           | 0.6      | 1.28       | 3.6        | 8                   | 14.3         | 28.3         | 1        | 1     |
| Weight with flange <sup>*4</sup> | m <sub>g</sub>      | kg        | 0.6      | 1.73       | 4.6        | 9.42                | 17.2         | 34.1         | 2        | 2     |
| Mounting position                |                     |           |          |            | A          | ny                  |              | •            |          |       |
|                                  |                     |           |          |            |            |                     |              |              |          |       |
| Output torques                   |                     |           | GSB044   | GSB062     | GSB090     | GSB120              | GSB142       | GSB180       | Ratio    | Stage |
|                                  |                     |           | 20       | 62         | 173        | 352                 | 656          | 1266         | 3        | 1     |
|                                  |                     |           | 17       | 54         | 153        | 315                 | 583          | 1122         | 4        | 1     |
|                                  |                     |           | 17       | 50         | 168        | 350                 | 649          | 1248         | 5        | 1     |
|                                  |                     |           | 16       | 47         | 156        | 324                 | 602          | 1163         | 7        | 1     |
|                                  |                     |           | 15       | 45         | 150        | 313                 | 581          | 1124         | 8        | 1     |
|                                  |                     |           | 15       | 45         | 148        | 309                 | 576          | 1112         | 10       | 1     |
| Nominal output torque*5          | T                   | Nm        | 20       | 62<br>54   | 173<br>153 | 352<br>315          | 656<br>583   | 1266<br>1122 | 15<br>20 | 2     |
|                                  | T <sub>2N</sub>     |           | 17       | 50         | 168        | 315                 | 649          | 1122         | 20       | 2     |
|                                  |                     |           | 16       | 47         | 159        | 327                 | 612          | 1174         | 30       | 2     |
|                                  |                     |           | 16       | 47         | 156        | 324                 | 602          | 1163         | 35       | 2     |
|                                  |                     |           | 17       | 50         | 168        | 350                 | 649          | 1248         | 50       | 2     |
|                                  |                     |           | 16       | 47         | 159        | 327                 | 612          | 1174         | 60       | 2     |
|                                  |                     |           | 16       | 47         | 156        | 324                 | 602          | 1163         | 70       | 2     |
|                                  |                     |           | 15       | 45         | 148        | 309                 | 576          | 1112         | 100      | 2     |
|                                  |                     |           | 36       | 112        | 312        | 633                 | 1181         | 2279         | 3        | 1     |
|                                  |                     |           | 30       | 96         | 276        | 567                 | 1049         | 2020         | 4        | 1     |
|                                  |                     |           | 30       | 91         | 302        | 629                 | 1168         | 2247         | 5        | 1     |
|                                  |                     |           | 28       | 85         | 282        | 584                 | 1083         | 2094         | 7        | 1     |
|                                  |                     |           | 26       | 81         | 270        | 563                 | 1045         | 2022         | 8        | 1     |
|                                  |                     |           | 26<br>36 | 81         | 266<br>312 | 556<br>633          | 1038<br>1181 | 2002<br>2279 | 10<br>15 | 1     |
| Max. acceleration torque*6       | T <sub>2B</sub>     | Nm        | 30       | 96         | 276        | 567                 | 1049         | 2020         | 20       | 2     |
|                                  | *2B                 |           | 30       | 91         | 302        | 629                 | 1168         | 2020         | 25       | 2     |
|                                  |                     |           | 28       | 85         | 285        | 588                 | 1 102        | 2113         | 30       | 2     |
|                                  |                     |           | 28       | 85         | 282        | 584                 | 1083         | 2094         | 35       | 2     |
|                                  |                     |           | 30       | 91         | 302        | 629                 | 1168         | 2247         | 50       | 2     |
|                                  |                     |           | 28       | 85         | 285        | 588                 | 1 102        | 2113         | 60       | 2     |
|                                  |                     |           | 28       | 85         | 282        | 584                 | 1083         | 2094         | 70       | 2     |
|                                  |                     |           | 26       | 81         | 266        | 556                 | 1038         | 2002         | 100      | 2     |
|                                  |                     |           | 60       | 186        | 520        | 1055                | 1969         | 3799         | 3        | 1     |
|                                  |                     |           | 50       | 161        | 460        | 945                 | 1748         | 3367         | 4        | 1     |
|                                  |                     |           | 50       | 151        | 504        | 1049                | 1947         | 3745         | 5        | 1     |
|                                  |                     |           | 47       | 142<br>135 | 469<br>450 | 973<br>939          | 1805<br>1742 | 3490<br>3371 | 7        | 1     |
|                                  |                     |           | 44       | 135        | 450        | 939                 | 1742         | 3371         | 10       | 1     |
|                                  |                     |           | 60       | 186        | 520        | 1055                | 1969         | 3799         | 15       | 2     |
| Emergency stop torque*7          | T <sub>2Not</sub>   | Nm        | 50       | 161        | 460        | 945                 | 1748         | 3367         | 20       | 2     |
| - · · ·                          | 2NOL                |           | 50       | 151        | 504        | 1049                | 1947         | 3745         | 25       | 2     |
|                                  |                     |           | 47       | 142        | 476        | 980                 | 1836         | 3522         | 30       | 2     |
|                                  |                     | [         | 47       | 142        | 469        | 973                 | 1805         | 3490         | 35       | 2     |
|                                  |                     |           | 50       | 151        | 504        | 1049                | 1947         | 3745         | 50       | 2     |
|                                  |                     |           | 47       | 142        | 476        | 980                 | 1836         | 3522         | 60       | 2     |
|                                  |                     |           | 47       | 142        | 469        | 973                 | 1805         | 3490         | 70       | 2     |
|                                  |                     |           | 44       | 135        | 444        | 926                 | 1729         | 3336         | 100      | 2     |

| Mass moment of inertia   |   |                   | GSB044 | GSB062 | GSB090 | GSB120 | GSB142 | GSB180 | Ratio | Stage |
|--------------------------|---|-------------------|--------|--------|--------|--------|--------|--------|-------|-------|
|                          |   |                   | 0.03   | 0.16   | 0.61   | 3.25   | 9.21   | 28.98  | 3     | 1     |
|                          |   |                   | 0.03   | 0.14   | 0.48   | 2.74   | 7.54   | 23.67  | 4     | 1     |
|                          |   |                   | 0.03   | 0.13   | 0.47   | 2.71   | 7.42   | 23.29  | 5     | 1     |
|                          |   |                   | 0.03   | 0.13   | 0.45   | 2.62   | 7.14   | 22.48  | 7     | 1     |
|                          |   |                   | 0.03   | 0.13   | 0.44   | 2.58   | 7.07   | 22.59  | 8     | 1     |
|                          |   |                   | 0.03   | 0.13   | 0.44   | 2.57   | 7.03   | 22.51  | 10    | 1     |
|                          |   |                   | 0.03   | 0.03   | 0.14   | 0.46   | 2.63   | 7.3    | 15    | 2     |
| Mass moment of inertia*8 | J | kgcm <sup>2</sup> | 0.03   | 0.03   | 0.14   | 0.46   | 2.63   | 7.3    | 20    | 2     |
|                          |   |                   | 0.03   | 0.03   | 0.14   | 0.46   | 2.63   | 7.1    | 25    | 2     |
|                          |   |                   | 0.03   | 0.03   | 0.14   | 0.46   | 2.43   | 7.1    | 30    | 2     |
|                          |   |                   | 0.03   | 0.03   | 0.14   | 0.44   | 2.43   | 7.1    | 35    | 2     |
|                          |   |                   | 0.03   | 0.03   | 0.14   | 0.44   | 2.43   | 6.92   | 50    | 2     |
|                          |   |                   | 0.03   | 0.03   | 0.14   | 0.43   | 2.39   | 6.72   | 60    | 2     |
|                          |   |                   | 0.03   | 0.03   | 0.14   | 0.43   | 2.39   | 6.72   | 80    | 2     |
|                          |   |                   | 0.03   | 0.03   | 0.14   | 0.4    | 2.39   | 6.72   | 100   | 2     |

<sup>\*1</sup> Load factor K<sub>A</sub>=1, n<sub>2</sub>=100 rpm ,at room temperature T=20°C in new condition
<sup>\*2</sup> Sound pressure level at 1m distance, measured for an input speed of 3000 rpm without load
<sup>\*3</sup> On the center of the output shaft
<sup>\*4</sup> Deviation of up to 10 % possible
<sup>\*5</sup> Service life: 30,000 h, n<sub>2</sub>=100 rpm
<sup>\*6</sup> Max 1000 cycles per hour. Acceleration torque proportion < 5% of the total operation time</li>
<sup>\*7</sup> Max 1000 cycles over the gear service life
<sup>\*6</sup> Related to the input shaft

#### Planetary gears GSB • High-End range

# Planetary gears GSBL

Low-backlash high-end angular gearboxes - powerful performance in a small space.

Just like the GSB line, our GSBL line combines high performance with low backlash and high precision. Helical gears secure a minimum noise level and smooth running. The right angle shape makes the GSBL line the perfect match for all dynamic applications where space is limited.

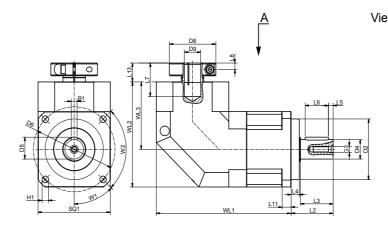
> Precision ground bevel gearbox Maximum positioning accuracy and excel-

#### You benefit from:

- Right angle version for space restricted applications •
- High torque level
- Up to ratio i = 200 in 2-stage version
- Best corrosion protection also for output side .
- Low noise level up to <56 dB (A) .
- Long product life time up to 30,000 h •

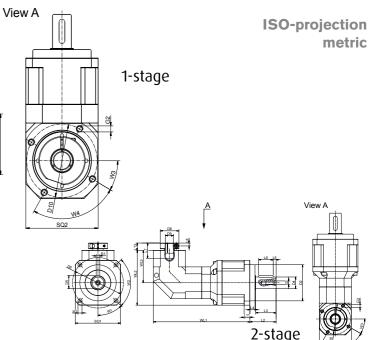


Precision ground helical gearing Maximum precision and smoothness as well as minimization of operating noises.




#### Typical application example




#### Angle gearbox for rotary tables

The GSBL070 angular gearboxes with gear ratios i=5 and i=10 are often utilized in rotary tables due to their design, their exceptionally high performance and their high input speeds. The angle design enables optimum utilization of tight installation spaces. The high-end angular gearboxes of the GSBL line, for example, shine particularly in the case of rotary tables with high precision requirements.



## Planetary gears GSBL • Dimensions

| Gearbox characteristics            |                 |     | Stage | GSBL044 | GSBL062 | GSBL090 | GSBL120  | GSBL142  | GSBL180  |
|------------------------------------|-----------------|-----|-------|---------|---------|---------|----------|----------|----------|
| Centering diameter output          | D2              | h7  |       | 35      | 50      | 80      | 1 10     | 130      | 160      |
| Output shaft diameter              | D <sub>4</sub>  | h6  |       | 13      | 16      | 22      | 32       | 40       | 55       |
| Shaft height including feather key | D <sub>5</sub>  |     |       | 15      | 18      | 24.5    | 35       | 43       | 59       |
| Hole circle diameter output        | D <sub>6</sub>  |     |       | 50      | 70      | 100     | 130      | 165      | 215      |
| Classica and a diamatan            |                 |     | 1     | 27      | 40      | 49      | 67       | 80       | 107      |
| Clamping system diameter           | D <sub>8</sub>  |     | 2     | 27      | 27      | 40      | 49       | 67       | 80       |
| Man and a chaft diamatan           |                 | 50  | 1     | 11      | 19      | 24      | 28       | 35       | 55       |
| Max. motor shaft diameter          | D <sub>9</sub>  | F7  | 2     | 11      | 11      | 19      | 24       | 28       | 38       |
|                                    |                 |     | 1     | 42      | 60.5    | 90      | 120      | 145      | 180      |
| Hole circle diameter input         | D <sub>10</sub> |     | 2     | 42      | 42      | 60.5    | 90       | 120      | 145      |
|                                    |                 |     | 1     | 98      | 115.5   | 167.1   | 208      | 236.5    | 313.6    |
| Housing length (1)                 | WL <sub>1</sub> |     | 2     | 124     | 132.5   | 161     | 226.6    | 274.5    | 320.5    |
|                                    | 14/1            |     | 1     | 67      | 86.5    | 134     | 165.5    | 209.5    | 279      |
| Housing length (2)                 | WL <sub>2</sub> |     | 2     | 67      | 67      | 86,5    | 134      | 165.5    | 209.5    |
| unities last (2)                   | 14/1            |     | 1     | 45      | 55.5    | 89      | 105.5    | 138.5    | 189.5    |
| Housing length (3)                 | WL <sub>3</sub> |     | 2     | 45      | 45      | 55.5    | 89       | 105.5    | 138.5    |
| Shaft length output                | L <sub>2</sub>  |     |       | 26      | 36      | 48      | 65       | 92       | 106      |
| Shaft length from shoulder         | L <sub>3</sub>  |     |       | 20      | 28      | 36      | 50       | 74       | 82       |
| Centering depth output             | L <sub>4</sub>  |     |       | 5       | 7       | 10      | 12       | 15       | 20       |
| Distance from shaft end            | L <sub>5</sub>  |     |       | 2.5     | 4       | 3       | 5        | 5        | 6        |
| Feather key length                 | L <sub>6</sub>  |     |       | 15      | 20      | 30      | 40       | 65       | 70       |
|                                    |                 |     | 1     | 21      | 27.5    | 44      | 57       | 75       | 104.5    |
| Max. input length motor shaft      | L <sub>7</sub>  |     | 2     | 21      | 21      | 27.5    | 44       | 57       | 75       |
|                                    |                 |     | 1     | 4.5     | 6       | 7       | 9        | 10.5     | 11       |
| Distance to center of screw        | L <sub>8</sub>  |     | 2     | 4.5     | 4.5     | 6       | 7        | 9        | 10.5     |
| Flange thickness output            | L <sub>11</sub> |     |       | 5       | 8       | 10      | 12       | 15       | 16       |
| Distance clamping ring - housing   | L <sub>13</sub> |     | 1     | 10      | 15.5    | 17.5    | 25.5     | 25.5     | 33       |
|                                    |                 |     | 2     | 10      | 10      | 15.5    | 17.5     | 25.5     | 25.5     |
| Square housing output              | SQ1             |     |       | 44      | 62      | 90      | 120      | 142      | 180      |
|                                    |                 |     | 1     | 44      | 62      | 90      | 120      | 142      | 180      |
| Square housing input               | SQ <sub>2</sub> |     | 2     | 44      | 44      | 62      | 90       | 120      | 142      |
| Feather key width                  | B,              | h9  |       | 5       | 5       | 6       | 10       | 12       | 16       |
| and a second second second second  |                 |     | 1     | M4 x 8  | M5 x 11 | M6 x 12 | M8 x 16  | M10 x 20 | M12 x 24 |
| Min. mounting thread x depth       | G <sub>2</sub>  | 4 x | 2     | M4 x 8  | M4 x 8  | M5 x 11 | M6 x 12  | M8 x 16  | M10 x 20 |
| Min. mounting thread x depth       | G <sub>3</sub>  |     |       | M4 x 11 | M5 x 14 | M8 x 20 | M10 x 23 | M12 x 28 | M14 x 32 |
| Hole bore                          | H,              | 4 x |       | 4.5     | 5.5     | 6.8     | 9        | 11       | 13       |
| Angle in °                         |                 |     |       | 45      | 45      | 45      | 45       | 45       | 45       |
| x times angle in °                 | W,              |     |       | 4 x 90  | 4 x 90  | 4 x 90  | 4 x 90   | 4 x 90   | 4 x 90   |
| Angle in °                         | W <sub>a</sub>  |     |       | 30      | 30      | 30      | 30       | 30       | 30       |
| x times angle in °                 | W.              |     |       | 4 x 90  | 4 x 90  | 4 x 90  | 4 x 90   | 4 x 90   | 4 x 90   |



#### Planetary gears GSBL • High-End range

|                                 |                     |           | GSBL044  | GSBL062    | GSBL090         | GSBL120             | GSBL142      | GSBL180      | Sta                                                                                                                                                                                              | age                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------|---------------------|-----------|----------|------------|-----------------|---------------------|--------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Service lifetime <sup>*1</sup>  | t                   | h         |          |            | 30              | 000                 |              |              |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Nominal input speed             | n,                  | rpm       | 5000     | 5000       | 4000            | 4000                | 3000         | 3000         |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Лах. input speed                | N <sub>1 max.</sub> | rpm       | 10000    | 10000      | 8000            | 8000                | 6000         | 6000         |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Standard backlash               | j <sub>t</sub>      | arcmin    |          |            |                 | opt. <=2)           |              |              | -                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 |                     |           |          |            |                 | opt. <=4)           |              |              |                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Noise level <sup>*2</sup>       | Qg                  | dB (A)    | <= 65    | <= 68      | <= 70           | <= 72               | <= 70        | <= 76        |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| fficiency                       | η                   | %         |          |            |                 | = 95<br>= 92        |              |              |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Protection class                |                     |           |          |            |                 | - 92<br>95          |              |              |                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Torsional rigidity              | C,                  | Nm/arcmin | 3        | 7          | 14              | 27                  | 60           | 145          |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Max. radial force <sup>*3</sup> | F <sub>2r</sub>     | N         | 780      | 1530       | 3250            | 6800                | 9400         | 15600        | <u> </u>                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Max. axial force <sup>*3</sup>  | F <sub>2a</sub>     | N         | 390      | 765        | 1625            | 3700                | 4700         | 7800         |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Operating temperature           | T <sub>B</sub>      | °C        |          | •          | -25°C ·         | - +90°C             |              |              |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ubrication                      |                     |           |          | S          | ynthetic grease | (lifetime-lubricate | d)           |              |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Weight with flange*4            | mg                  | kg        | 1        | 2.2        | 6.6             | 13.2                | 22.3         | 50           |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 | g                   | N9        | 1        | 2          | 5.5             | 12.5                | 23.2         | 44.4         |                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Mounting position               |                     |           |          |            | A               | ny                  | -            |              |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Jutout torques                  |                     |           | CEDIAA   | 6601072    | CEDLOOO         | 6601430             | 6601443      | CC01400      | Datia                                                                                                                                                                                            | 64-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Output torques                  |                     |           | GSBL044  | GSBL062    | GSBL090         | GSBL120             | GSBL142      | GSBL180      |                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 |                     |           | 20       | 62         | 173             | 352                 | 656          | 1266         |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 |                     |           | 17       | 54         | 153             | 315                 | 583          | 1122         | -                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 |                     |           | 17<br>16 | 50<br>47   | 168<br>156      | 350<br>324          | 649<br>602   | 1248<br>1163 |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 |                     |           | 16       | 47         | 156             | 324                 | 576          | 1103         | -                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 |                     |           | 15       | 45         | 150             | 313                 | 581          | 112          |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 |                     |           | 15       | 45         | 148             | 309                 | 576          | 1112         | -                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Nominal output torque*5         | T <sub>2N</sub>     | Nm        | 17       | 50         | 168             | 350                 | 649          | 1248         | 25                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 | 211                 |           | 16       | 47         | 159             | 327                 | 612          | 1174         | 30                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 |                     |           | 17       | 50         | 168             | 350                 | 649          | 1248         | 50                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 |                     |           | 16       | 47         | 156             | 324                 | 602          | 1163         | 3         1           4         1           5         1           7         1           10         1           16         1           20         1           25         2           30         2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 |                     |           | 15       | 45         | 148             | 309                 | 576          | 1112         | 100                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 |                     |           | 16       | 47         | 156             | 324                 | 602          | 1163         |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 |                     |           | 14       | 46         | 152             | 292                 | 542          | 1043         |                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 |                     |           | 15       | 45         | 148             | 309                 | 576          | 1112         | 200                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 |                     |           | 36       | 112        | 312             | 633                 | 1181         | 2279         | 3                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 |                     |           | 30       | 96         | 276             | 567                 | 1049         | 2020         | 4                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 |                     |           | 30       | 91         | 302             | 629                 | 1168         | 2247         |                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 |                     |           | 28       | 85         | 282             | 584                 | 1083         | 2094         | +                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 |                     |           | 26       | 81         | 266             | 556                 | 1038         | 2002         |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 |                     |           | 26       | 81         | 270             | 563                 | 1045         | 2022         |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Max. acceleration torque*6      | т                   | Nm        | 26<br>30 | 81<br>91   | 266<br>302      | 556<br>629          | 1038<br>1168 | 2002<br>2247 |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| אסא. מננכוכומנוטוו נטועשב       | T <sub>2B</sub>     |           | 28       | 85         | 285             | 588                 | 1102         | 2113         |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 |                     |           | 30       | 91         | 302             | 629                 | 1168         | 2113         |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 |                     |           | 28       | 85         | 282             | 584                 | 1083         | 2094         |                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 |                     |           | 26       | 81         | 266             | 556                 | 1038         | 2002         |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 |                     |           | 28       | 85         | 282             | 584                 | 1083         | 2094         | 140                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 |                     |           | 25       | 83         | 274             | 525                 | 975          | 1877         | 180                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 |                     |           | 26       | 81         | 266             | 556                 | 1038         | 2002         | 200                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 |                     |           | 60       | 186        | 520             | 1055                | 1969         | 3799         | 3                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 |                     |           | 50       | 161        | 460             | 945                 | 1748         | 3367         | 4                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 |                     |           | 50       | 151        | 504             | 1049                | 1947         | 3745         | 5                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 |                     |           | 47       | 142        | 469             | 973                 | 1805         | 3490         | 7                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 |                     |           | 44       | 135        | 444             | 926                 | 1729         | 3336         | 10                                                                                                                                                                                               | 1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       2       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <t< td=""></t<> |
|                                 |                     |           | 44       | 135        | 450             | 939                 | 1742         | 3371         | +                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 |                     |           | 44       | 135        | 444             | 926                 | 1729         | 3336         | -                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| mergency stop torque*7          | T <sub>2Not</sub>   | Nm        | 50       | 151        | 504             | 1049                | 1947         | 3745         | -                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 |                     |           | 47       | 142        | 476             | 980                 | 1836         | 3522         |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 |                     |           | 50<br>47 | 151<br>142 | 504<br>469      | 1049<br>973         | 1947<br>1805 | 3745<br>3490 |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 |                     |           | 47       | 142        | 469             | 973                 | 1805         | 3490         |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 |                     |           | 44       | 142        | 444             | 920                 | 1729         | 3490         |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 |                     |           | 41       | 139        | 457             | 876                 | 1625         | 3128         |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 |                     |           | 44       | 135        | 444             | 926                 | 1729         | 3336         | -                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Mass moment of inertia   |                |                   | GSBL044 | GSBL062 | GSBL090 | GSBL120 | GSBL142 | GSBL180 | Ratio | Stage |
|--------------------------|----------------|-------------------|---------|---------|---------|---------|---------|---------|-------|-------|
|                          |                |                   | 0.09    | 0.36    | 2.28    | 6.85    | 23.5    | 68.2    | 3     | 1     |
|                          |                |                   | 0.09    | 0.36    | 2.28    | 6.85    | 23.5    | 68.2    | 4     | 1     |
|                          |                |                   | 0.09    | 0.36    | 2.28    | 6.85    | 23.5    | 68.2    | 5     | 1     |
|                          |                |                   | 0.09    | 0.36    | 2.28    | 6.85    | 23.5    | 68.2    | 7     | 1     |
|                          |                |                   | 0.09    | 0.36    | 2.28    | 6.85    | 23.5    | 68.2    | 10    | 1     |
|                          |                |                   | 0.03    | 0.08    | 1.88    | 6.2     | 21.8    | 65.5    | 16    | 1     |
|                          |                |                   | 0.03    | 0.08    | 1.88    | 6.2     | 21.8    | 65.5    | 20    | 1     |
| Mass moment of inertia*8 | J <sub>1</sub> | kgcm <sup>2</sup> | 0.09    | 0.09    | 0.36    | 2.28    | 6.85    | 23.1    | 25    | 2     |
|                          |                |                   | 0.09    | 0.09    | 0.36    | 2.28    | 6.85    | 23.1    | 30    | 2     |
|                          |                |                   | 0.09    | 0.09    | 0.36    | 2.28    | 6.85    | 23.1    | 50    | 2     |
|                          |                |                   | 0.09    | 0.09    | 0.36    | 2.28    | 6.85    | 23.1    | 70    | 2     |
|                          |                |                   | 0.09    | 0.09    | 0.36    | 2.28    | 6.85    | 23.1    | 100   | 2     |
|                          |                |                   | 0.03    | 0.03    | 0.1     | 1.88    | 6.2     | 21.2    | 140   | 2     |
|                          |                |                   | 0.03    | 0.03    | 0.1     | 1.88    | 6.2     | 21.2    | 180   | 2     |
|                          |                |                   | 0.03    | 0.03    | 0.1     | 1.88    | 6.2     | 21.2    | 200   | 2     |

<sup>\*1</sup> Load factor K<sub>A</sub>=1, n<sub>2</sub>=100 rpm ,at room temperature T=20°C in new condition
<sup>\*2</sup> Sound pressure level at 1 m distance, measured for an input speed of 3000 rpm without load
<sup>\*3</sup> On the center of the output shaft
<sup>\*4</sup> Deviation of up to 10 % possible
<sup>\*5</sup> Service life: 30,000 h, n<sub>2</sub>=100 rpm
<sup>\*6</sup> Max 1000 cycles per hour. Acceleration torque proportion < 5 % of the total operation time</li>
<sup>\*7</sup> Max 1000 cycles over the gear service life
<sup>\*6</sup> Related to the input shaft

#### Planetary gears GSBL • High-End range

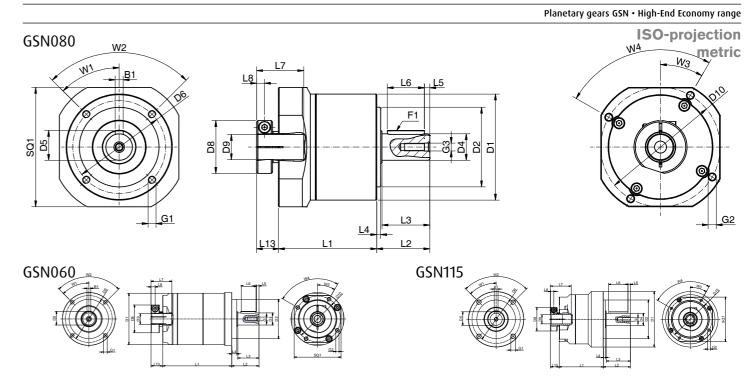
# Planetary gears GSN

The high-end economy gearbox distinguishes itself by excellent quiet operating characteristics and low noise emission.

The GSN line is the perfect match for applications where a backlash of 10 arcmin or better is required. Its helical gears secure a minimum noise level and a smooth running. The GSN line is used for various applications with regard to precision and efficiency.

#### You benefit from:

- Low noise level due to ground helical gearing up to <=58 dB (A)</li>
- High power density
- Protection class IP 65
- High torsional rigidity
- Lifetime of 30,000 h
- Lifetime lubrication




#### Typical application example



#### Industrial dough mixer

As an example, the GSN060 planetary gear is used in the food industry. The decisive advantages in the application of this industrial kneading machine are the protection class IP65 and excellent quiet operating characteristics. By means of precision ground, helical cut gears, operating noise is reduced to a minimum with the GSN gearbox line.



## Planetary gears GSN • Dimensions

| Gearbox characteristics            |                 |     | GSN060  | GSN080  | GSN115   |
|------------------------------------|-----------------|-----|---------|---------|----------|
| Housing diameter                   | D <sub>1</sub>  |     | 60      | 80      | 115      |
| Centering diameter output          | D <sub>2</sub>  | h7  | 40      | 60      | 80       |
| Output shaft diameter              | D <sub>4</sub>  | h6  | 14      | 20      | 25       |
| Shaft height including feather key | D <sub>5</sub>  |     | 16      | 22.5    | 28       |
| Hole circle diameter output        | D <sub>6</sub>  |     | 52      | 70      | 100      |
| Clamping system diameter           | D <sub>8</sub>  |     | 29      | 40      | 49       |
| Max. motor shaft diameter          | D <sub>9</sub>  | F7  | 14      | 19      | 24       |
| Hole circle diameter input         | D <sub>10</sub> |     | 42      | 90      | 90       |
| Housing length 1-stage             | L <sub>1</sub>  |     | 58      | 74      | 91       |
| Housing length 2-stage             | L <sub>1</sub>  |     | 84      | 109     | 134.5    |
| Shaft length output                | L <sub>2</sub>  |     | 34      | 40      | 56       |
| Shaft length from shoulder         | L <sub>3</sub>  |     | 30      | 36      | 50       |
| Centering depth output             | L <sub>4</sub>  |     | 3       | 3       | 4        |
| Distance from shaft end            | L <sub>5</sub>  |     | 2.5     | 4       | 5        |
| Feather key length                 | L <sub>6</sub>  |     | 25      | 28      | 40       |
| Max. input length motor shaft      | L <sub>7</sub>  |     | 27.5    | 35.5    | 43       |
| Distance to center of screw        | L               |     | 5       | 6       | 7        |
| Distance clamping ring - housing   | L <sub>13</sub> |     | 11.5    | 16.5    | 18.5     |
| Square housing                     | SQ1             |     | 44      | 90      | 92       |
| Feather key width                  | B <sub>1</sub>  | h9  | 5       | 6       | 8        |
| Min. mounting thread x depth       | G <sub>1</sub>  | 4 x | M5 x 10 | M6 x 12 | M10 x 20 |
| Min. mounting thread x depth       | G <sub>2</sub>  | 4 x | M4 x 8  | M6 x 12 | M6 x 12  |
| Min. mounting thread x depth       | G <sub>3</sub>  |     | M4 x 11 | M6 x 15 | M8 x 20  |
| Angle in °                         | W <sub>1</sub>  |     | 45      | 45      | 45       |
| x times angle in °                 | W2              |     | 4 x 90  | 4 x 90  | 4 x 90   |
| Angle in °                         | W <sub>3</sub>  |     | 30      | 30      | 30       |
| x times angle in °                 | W4              |     | 4 x 90  | 4 x 90  | 4 x 90   |

Find more information regarding flanges and reduction sleeves for all common motor types on pages 48-50.

#### Planetary gears GSN • High-End Economy range

|                                  |                 |           | GSN060 | GSN080                              | GSN115 | Stage |
|----------------------------------|-----------------|-----------|--------|-------------------------------------|--------|-------|
| Service lifetime <sup>*1</sup>   | tl              | h         |        | 30000                               |        |       |
| Nominal input speed              | n               | rpm       | 4500   | 4000                                | 4000   |       |
| Max. input speed                 | n, max.         | rpm       | 8000   | 7000                                | 7000   |       |
|                                  |                 |           |        | <=7                                 |        | 1     |
| Standard backlash                | J <sub>t</sub>  | arcmin    |        | <=10                                |        | 2     |
| Noise level <sup>*2</sup>        | Qg              | dB (A)    | <=58   | <=60                                | <=65   |       |
| rff:-:                           |                 | <i></i>   |        | >=97                                |        | 1     |
| Efficiency                       | η               | %         |        | >=94                                |        | 2     |
| Protection class                 |                 |           |        | IP65                                |        |       |
| Torsional rigidity               | C,              | Nm/arcmin | 4      | 12                                  | 14     |       |
| Max. radial force <sup>°3</sup>  | F <sub>2r</sub> | N         | 1030   | 1570                                | 3590   |       |
| Max. axial force <sup>*3</sup>   | F <sub>2a</sub> | N         | 515    | 785                                 | 1795   |       |
| Operating temperature            | T <sub>B</sub>  | °C        |        | -25°C - +90°C                       |        |       |
| Lubrication                      |                 |           |        | liquid grease (lifetime-lubricated) |        |       |
|                                  |                 |           | 0.99   | 2.1                                 | 4.98   | 1     |
| Weight with flange <sup>*4</sup> | mg              | kg        | 1.46   | 3.2                                 | 6.92   | 2     |
| Mounting position                |                 |           |        | Any                                 |        |       |

| Mass moment of inertia               |                |                   | GSN060 | GSN080 | GSN115 | Ratio | Stage |
|--------------------------------------|----------------|-------------------|--------|--------|--------|-------|-------|
|                                      |                |                   | 0.06   | 0.48   | 0.6    | 3     | 1     |
|                                      |                |                   | 0.06   | 0.38   | 0.45   | 4     | 1     |
|                                      |                |                   | 0.06   | 0.38   | 0.45   | 5     | 1     |
|                                      |                |                   | 0.06   | 0.38   | 0.45   | 7     | 1     |
|                                      |                |                   | 0.06   | 0.35   | 0.41   | 10    | 1     |
|                                      |                |                   | 0.06   | 0.41   | 0.45   | 15    | 2     |
| Mass moment of inertia <sup>*8</sup> | <u> </u> .     | lineary?          | 0.06   | 0.38   | 0.45   | 20    | 2     |
| wass moment of inertia °             | J <sub>1</sub> | kgcm <sup>2</sup> | 0.06   | 0.38   | 0.45   | 25    | 2     |
|                                      |                |                   | 0.06   | 0.38   | 0.45   | 30    | 2     |
|                                      |                |                   | 0.06   | 0.38   | 0.45   | 35    | 2     |
|                                      |                |                   | 0.06   | 0.38   | 0.45   | 40    | 2     |
|                                      |                |                   | 0.06   | 0.38   | 0.45   | 50    | 2     |
|                                      |                |                   | 0.06   | 0.38   | 0.45   | 70    | 2     |
|                                      |                |                   | 0.06   | 0.38   | 0.45   | 100   | 2     |

<sup>\*1</sup> Load factor K<sub>A</sub>=1, n<sub>2</sub>=100 rpm, at room temperature T=20°C in new condition
<sup>\*2</sup> Sound pressure level at 1 m distance, measured for an input speed of 3000 rpm without load
<sup>\*3</sup> On the center of the output shaft
<sup>\*4</sup> Deviation of up to 10 % possible
<sup>\*5</sup> Service life: 30,000 h, n<sub>2</sub>=100 rpm
<sup>\*6</sup> Max 1000 cycles per hour. Acceleration torque proportion < 5% of the total operation time</li>
<sup>\*7</sup> Max 1000 cycles over the gear service life
<sup>\*8</sup> Related to the input shaft

|                                        | ing               | ку | 1.46       | 3.2        | 6.92   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2    |
|----------------------------------------|-------------------|----|------------|------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Mounting position                      |                   |    |            | Any        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
|                                        |                   |    |            |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| Output torques                         |                   |    | GSN060     | GSN080     | GSN115 | Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Stag |
| · ·                                    |                   |    | 29         | 118        | 182    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1    |
|                                        |                   |    | 40         | 116        | 161    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1    |
|                                        |                   |    | 42         | 113        | 176    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1    |
|                                        |                   |    | 37         | 110        | 164    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1    |
|                                        |                   |    | 26         | 105        | 155    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1    |
|                                        |                   |    | 29         | 118        | 182    | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2    |
| 1                                      | -                 | Nm | 40         | 116        | 161    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2    |
| Nominal output torque <sup>°5</sup>    | T <sub>2B</sub>   | Nm | 42         | 113        | 176    | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2    |
|                                        |                   |    | 29         | 118        | 182    | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2    |
|                                        |                   |    | 37         | 110        | 164    | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2    |
|                                        |                   |    | 40         | 116        | 161    | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2    |
|                                        |                   |    | 42         | 113        | 176    | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2    |
|                                        |                   |    | 37         | 1 10       | 164    | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2    |
|                                        |                   |    | 26         | 105        | 155    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2    |
|                                        |                   |    | 53         | 212        | 327    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1    |
|                                        |                   |    | 72         | 208        | 289    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1    |
|                                        |                   |    | 76         | 204        | 317    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1    |
|                                        |                   |    | 66         | 198        | 295    | 3       4       5       7       10       15       20       25       30       35       40       50       70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1    |
|                                        |                   |    | 47         | 189        | 279    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1    |
|                                        |                   |    | 53         | 212        | 327    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2    |
|                                        |                   |    | 72         | 208        | 289    | 3         4         5         7         10         15         20         25         30         25         30         35         40         50         70         100         70         100         70         100         3         4         5         7         10         15         20         3         4         5         7         10         15         20         25         30         25         30         25         30         20         25         30         40         50         77         10         10         15         20         31         20         30         20         20 | 2    |
| Max. acceleration torque <sup>*6</sup> | T <sub>2N</sub>   | Nm | 76         | 204        | 317    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2    |
|                                        |                   |    | 53         | 212        | 327    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2    |
|                                        |                   |    | 66         | 198        | 295    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2    |
|                                        |                   |    | 72         | 208        | 289    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2    |
|                                        |                   |    | 76         | 204        | 317    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2    |
|                                        |                   |    | 66         | 198        | 295    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2    |
|                                        |                   |    | 47         | 189        | 279    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2    |
|                                        | 1                 |    |            | 050        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
|                                        |                   |    | 88         | 353        | 545    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1    |
|                                        |                   |    | 120        | 347        | 482    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1    |
|                                        |                   |    | 126        | 340        | 528    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1    |
|                                        |                   |    | 110        | 331        | 492    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1    |
|                                        |                   |    | 79         | 315        | 465    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1    |
|                                        |                   |    | 88         | 353        | 545    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2    |
| mergency stop torque <sup>°7</sup>     | T <sub>2Not</sub> | Nm | 120        | 347        | 482    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2    |
| incigency stop torque                  | 21101             |    | 126        | 340        | 528    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2    |
|                                        |                   |    | 88         | 353        | 545    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2    |
|                                        |                   |    | 110        | 331        | 492    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2    |
|                                        |                   |    | 120<br>126 | 347<br>340 | 482    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2    |
|                                        |                   |    |            |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2    |
|                                        |                   |    | 110        | 331        | 492    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2    |
|                                        |                   |    | 79         | 315        | 465    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2    |

#### Planetary gears GSN • High-End Economy range

# Planetary gears GFE

The flexible high-end economy gearbox features impressively high torque.

Our GFE line is available in seven sizes ranging from 50 mm to 220 mm. Ground helical gears ensure a minimum noise level and smooth running. The GFE line stands for economic efficiency and fits perfectly for applications with high torques.

#### You benefit from:

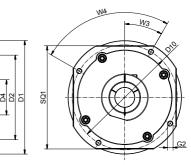
- Big housing sizes up to 220 mm
- Max. input speed up to 10,000 rpm
- 30,000 h lifetime
- Nominal output torques up to 1,562 Nm
- Protection class IP 65
- Lifetime lubrication



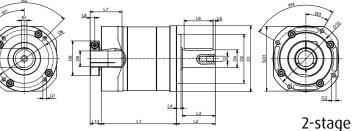
#### Typical application example



#### Height adjustment of operating tables


For height adjustment of OP tables, two aspects play an especially decisive role. Use in the direct vicinity of the patient means that high positioning accuracy and smoothness are indispensable. The planetary gears of the GFE line fulfill the noise minimization requirements through precision ground, helical cut gears.

## Planetary gears GFE • Dimensions


| Gearbox characteristics            |                 |     | GFE050  | GFE070  | GFE090  | GFE120   | GFE145   | GFE180     | GFE220   |
|------------------------------------|-----------------|-----|---------|---------|---------|----------|----------|------------|----------|
| Housing diameter                   | D <sub>1</sub>  |     | 50      | 70      | 93      | 122      | 148      | 205        | 242      |
| Centering diameter output          | D <sub>2</sub>  | h7  | 35      | 50      | 70      | 90       | 1 10     | 160        | 180      |
| Output shaft diameter              | D <sub>4</sub>  | h6  | 13      | 16      | 22      | 32       | 40       | 55         | 75       |
| Shaft height including feather key | D <sub>5</sub>  |     | 15      | 18      | 24.5    | 35       | 43       | 59         | 79.5     |
| Hole circle diameter output        | D <sub>6</sub>  |     | 42      | 60      | 80      | 105      | 130      | 184        | 218      |
| Clamping system diameter           | D <sub>8</sub>  |     | 27      | 40      | 49      | 67       | 80       | 100        | 107      |
| Max. motor shaft diameter          | D <sub>9</sub>  | F7  | 11      | 19      | 24      | 28       | 38       | 48         | 55       |
| Hole circle diameter input         | D <sub>10</sub> |     | 42      | 60      | 80      | 105      | 145      | 186        | 224      |
| Housing length 1-stage             | L,              |     | 59.5    | 85      | 100     | 132      | 168.5    | 173.5      | 202      |
| Housing length 2-stage             | L,              |     | 86      | 119     | 140     | 186      | 232.5    | 243        | 289      |
| Shaft length output                | L <sub>2</sub>  |     | 25      | 34      | 44      | 60       | 87       | 106        | 129      |
| Shaft length from shoulder         | L <sub>3</sub>  |     | 20      | 28      | 36      | 50       | 74       | 82         | 104      |
| Centering depth output             | L <sub>4</sub>  |     | 4       | 5       | 6       | 8        | 10       | 20         | 20       |
| Distance from shaft end            | L <sub>5</sub>  |     | 2.5     | 4       | 3       | 5        | 5        | 6          | 7        |
| Feather key length                 | L <sub>6</sub>  |     | 15      | 20      | 30      | 40       | 65       | 70         | 90       |
| Max. input length motor shaft      | L <sub>7</sub>  |     | 21      | 27.5    | 42      | 53       | 71.5     | 102        | 114.5    |
| Distance to center of screw        | L <sub>8</sub>  |     | 4.5     | 6       | 7       | 9        | 10.5     | 11         | 11       |
| Distance clamping ring - housing   | L <sub>13</sub> |     | 11      | 15.5    | 17.5    | 25.5     | 25.5     | 32.5       | 32.5     |
| Square housing                     | SQ1             |     | 45      | 62      | 90      | 120      | 145      | 180        | 220      |
| Feather key width                  | B <sub>1</sub>  | h9  | 5       | 5       | 6       | 10       | 12       | 16         | 20       |
| Min. mounting thread x depth       | G,              | 4 x | M4 x 8  | M5 x 10 | M6 x 12 | M8 x 16  | M10 x 16 | M12 x 22.5 | M16 x 31 |
| Min. mounting thread x depth       | G <sub>2</sub>  | 4 x | M4 x 7  | M5 x 10 | M6 x 12 | M8 x 16  | M10 x 20 | M12 x 24   | M12 x 24 |
| Min. mounting thread x depth       | G <sub>3</sub>  |     | M4 x 10 | M5 x 13 | M6 x 20 | M10 x 23 | M12 x 27 | M14 x 33   | M16 x 36 |
| Angle in °                         | W <sub>1</sub>  |     | 45      | 45      | 45      | 45       | 45       | 45         | 45       |
| x times angle in °                 | W <sub>2</sub>  |     | 4 x 90  | 4 x 90  | 4 x 90  | 4 x 90   | 4 x 90   | 4 x 90     | 4 x 90   |
| Angle in °                         | W <sub>3</sub>  |     | 30      | 30      | 30      | 30       | 30       | 30         | 30       |
| x times angle in °                 | W <sub>4</sub>  |     | 4 x 90  | 4 x 90  | 4 x 90  | 4 x 90   | 4 x 90   | 4 x 90     | 4 x 90   |

Find more information regarding flanges and reduction sleeves for all common motor types on pages 48-50.

ISO-projection metric







#### Planetary gears GFE • High-End Economy range

|                                  |                 |           | GFE050 | GFE070 | GFE090     | GFE120            | GFE145    | GFE180 | GFE220   | Stage |
|----------------------------------|-----------------|-----------|--------|--------|------------|-------------------|-----------|--------|----------|-------|
| Service lifetime <sup>*1</sup>   | tl              | h         |        |        |            | 30000             |           |        | ·        |       |
| Nominal input speed              | n,              | rpm       | 5000   | 4000   | 4000       | 4000              | 3000      | 2500   | 2000     |       |
| Max. input speed                 | n, max.         | rpm       | 10000  | 7000   | 7000       | 7000              | 6000      | 4000   | 3000     |       |
| Standard backlash                | :               | arcmin    |        |        |            | <=7               |           |        |          | 1     |
| Stanuaru Dackiasii               | J <sub>t</sub>  | arcmin    |        |        |            | <=10              |           |        |          | 2     |
| Noise level <sup>*2</sup>        | Qg              | dB (A)    | <=62   | <=62   | <=65       | <=68              | <=70      | <=70   | <=70     |       |
| <b>r</b> ((); -;                 | _               | ~         |        |        |            | >=97              | -         |        |          | 1     |
| Efficiency                       | η               | %         |        |        |            | >=94              |           |        |          | 2     |
| Protection class                 |                 |           |        |        |            | IP65              |           |        |          |       |
| Torsional rigidity               | C,              | Nm/arcmin | 2.3    | 5      | 15         | 45                | 69        | 140    | 220      |       |
| Max. radial force <sup>*3</sup>  | F <sub>2r</sub> | N         | 810    | 1900   | 3000       | 6500              | 9100      | 11150  | 35000    |       |
| Max. axial force <sup>*3</sup>   | F <sub>2a</sub> | N         | 700    | 590    | 1900       | 3250              | 6000      | 5575   | 17500    |       |
| Operating temperature            | T <sub>B</sub>  | °C        |        |        |            | -25°C - +90°C     | ,<br>,    |        | <u>`</u> |       |
| Lubrication                      |                 |           |        |        | liquid gre | ease (lifetime-lu | bricated) |        |          |       |
| Waight with flag as *4           |                 |           | 0.63   | 1.57   | 3.22       | 8                 | 16        | 33     | 54       | 1     |
| Weight with flange <sup>*4</sup> | mg              | kg        | 0.9    | 2.24   | 4.59       | 11.22             | 22.5      | 46.4   | 75       | 2     |
| Mounting position                |                 |           |        |        |            | Any               |           |        |          |       |

| Output torques                         |                   |     | GFE050 | GFE070 | GFE090            | GFE120 | GFE145 | GFE180   | GFE220 | Ratio | Stage |
|----------------------------------------|-------------------|-----|--------|--------|-------------------|--------|--------|----------|--------|-------|-------|
|                                        |                   |     | 19     | 55     | 138               | 295    | 530    | 1034     | 1562   | 3     | 1     |
|                                        |                   |     | 17     | 50     | 122               | 262    | 469    | 946      | 1430   | 4     | 1     |
|                                        |                   |     | 15     | 46     | 114               | 245    | 441    | 1018     | 1397   | 5     | 1     |
|                                        |                   |     | 14     | 43     | 108               | 229    | 410    | 869      | 1298   | 7     | 1     |
|                                        |                   |     | 13     | 41     | 101               | 218    | 392    | 836      | 1254   | 10    | 1     |
|                                        |                   |     | 19     | 55     | 138               | 295    | 530    | 1034     | 1562   | 15    | 2     |
| 1                                      | -                 | New | 17     | 50     | 122               | 262    | 469    | 946      | 1430   | 20    | 2     |
| lominal output torque <sup>°s</sup>    | T <sub>2B</sub>   | Nm  | 15     | 46     | 114               | 245    | 441    | 919      | 1397   | 25    | 2     |
|                                        |                   |     | 19     | 55     | 138               | 295    | 530    | 1034     | 1562   | 30    | 2     |
|                                        |                   |     | 14     | 43     | 108               | 229    | 410    | 869      | 1298   | 35    | 2     |
|                                        |                   |     | 17     | 50     | 122               | 262    | 470    | 946      | 1430   | 40    | 2     |
|                                        |                   |     | 15     | 46     | 114               | 245    | 442    | 919      | 1397   | 50    | 2     |
|                                        |                   |     | 14     | 44     | 108               | 229    | 410    | 869      | 1298   | 70    | 2     |
|                                        |                   |     | 13     | 41     | 101               | 218    | 393    | 836      | 1210   | 100   | 2     |
|                                        |                   |     | 34     | 99     | 248               | 531    | 954    | 1861     | 2812   | 3     | 1     |
|                                        |                   |     | 30     | 89     | 220               | 471    | 843    | 1703     | 2574   | 4     | 1     |
|                                        |                   |     | 28     | 83     | 206               | 442    | 794    | 1832     | 2515   | 5     | 1     |
|                                        |                   |     | 26     | 77     | 194               | 412    | 739    | 1564     | 2336   | 7     | 1     |
|                                        |                   |     | 24     | 73     | 182               | 392    | 705    | 1505     | 2257   | 10    | 1     |
|                                        |                   |     | 34     | 99     | 248               | 531    | 954    | 954 1861 | 2812   | 15    | 2     |
|                                        | _                 |     | 30     | 89     | 89 220 471 843 17 | 1703   | 2574   | 20       | 2      |       |       |
| Nax. acceleration torque <sup>*6</sup> | T <sub>2N</sub>   | Nm  | 28     | 83     | 206               | 442    | 794    | 1653     | 2515   | 25    | 2     |
|                                        |                   |     | 34     | 99     | 248               | 531    | 954    | 1861     | 2812   | 30    | 2     |
|                                        |                   |     | 26     | 77     | 194               | 412    | 739    | 1564     | 2336   | 35    | 2     |
|                                        |                   |     | 30     | 89     | 220               | 471    | 845    | 1703     | 2574   | 40    | 2     |
|                                        |                   |     | 28     | 83     | 206               | 442    | 796    | 1653     | 2515   | 50    | 2     |
|                                        |                   |     | 26     | 79     | 194               | 412    | 739    | 1564     | 2336   | 70    | 2     |
|                                        |                   |     | 24     | 73     | 182               | 392    | 707    | 1505     | 2178   | 100   | 2     |
|                                        |                   |     | 56     | 165    | 413               | 884    | 1591   | 3102     | 4686   | 3     | 1     |
|                                        |                   |     | 50     | 149    | 366               | 785    | 1406   | 2838     | 4290   | 4     | 1     |
|                                        |                   |     | 46     | 139    | 343               | 736    | 1323   | 3053     | 4191   | 5     | 1     |
|                                        |                   |     | 43     | 129    | 323               | 686    | 1231   | 2607     | 3894   | 7     | 1     |
|                                        |                   |     | 40     | 120    | 304               | 653    | 1175   | 2508     | 3762   | 10    | 1     |
|                                        |                   |     | 56     | 165    | 413               | 884    | 1591   | 3102     | 4686   | 15    | 2     |
|                                        |                   |     | 50     | 149    | 366               | 785    | 1406   | 2838     | 4290   | 20    | 2     |
| mergency stop torque <sup>*7</sup>     | T <sub>2Not</sub> | Nm  | 46     | 139    | 343               | 736    | 1323   | 2756     | 4191   | 25    | 2     |
|                                        |                   |     | 56     | 165    | 413               | 884    | 1591   | 3102     | 4686   | 30    | 2     |
|                                        |                   |     | 43     | 129    | 323               | 686    | 1231   | 2607     | 3894   | 35    | 2     |
|                                        |                   |     | 50     | 149    | 366               | 785    | 1409   | 2838     | 4290   | 40    | 2     |
|                                        |                   |     | 46     | 139    | 343               | 736    | 1327   | 2756     | 4191   | 50    | 2     |
|                                        |                   |     | 43     | 132    | 323               | 686    | 1231   | 2607     | 3894   | 70    | 2     |
|                                        |                   |     | 40     | 122    | 304               | 653    | 1178   | 2508     | 3630   | 100   | 2     |

| Mass moment of inertia              |   |                   | GFE050 | GFE070 | GFE090 | GFE120 | GFE145 | GFE180 | GFE220 | Ratio | Stage |
|-------------------------------------|---|-------------------|--------|--------|--------|--------|--------|--------|--------|-------|-------|
|                                     |   |                   | 0.04   | 0.14   | 0.61   | 3.25   | 8.75   | 24.63  | 50.67  | 3     | 1     |
|                                     |   |                   | 0.04   | 0.11   | 0.47   | 2.74   | 6.84   | 20.12  | 46.21  | 4     | 1     |
|                                     |   |                   | 0.04   | 0.11   | 0.47   | 2.74   | 6.84   | 19.8   | 45.28  | 5     | 1     |
|                                     |   |                   | 0.04   | 0.11   | 0.44   | 2.58   | 6.78   | 19.21  | 43.32  | 7     | 1     |
|                                     |   |                   | 0.04   | 0.11   | 0.47   | 2.74   | 6.84   | 19.13  | 42.98  | 10    | 1     |
|                                     |   |                   | 0.04   | 0.14   | 0.61   | 3.25   | 8.75   | 24.63  | 50.67  | 15    | 2     |
| •••••                               | . | 1                 | 0.04   | 0.13   | 0.48   | 2.74   | 7.16   | 20.12  | 46.21  | 20    | 2     |
| Mass moment of inertia <sup>®</sup> | J | kgcm <sup>2</sup> | 0.04   | 0.11   | 0.47   | 2.74   | 6.84   | 19.8   | 45.28  | 25    | 2     |
|                                     |   |                   | 0.04   | 0.14   | 0.61   | 3.25   | 8.75   | 24.63  | 50.67  | 30    | 2     |
|                                     |   |                   | 0.04   | 0.11   | 0.44   | 2.58   | 6.78   | 19.21  | 43.32  | 35    | 2     |
|                                     |   |                   | 0.04   | 0.11   | 0.48   | 2.74   | 7.16   | 20.12  | 46.21  | 40    | 2     |
|                                     |   |                   | 0.04   | 0.11   | 0.47   | 2.74   | 6.84   | 19.8   | 45.28  | 50    | 2     |
|                                     |   |                   | 0.04   | 0.11   | 0.44   | 2.58   | 6.78   | 19.21  | 43.32  | 70    | 2     |
|                                     |   |                   | 0.04   | 0.11   | 0.47   | 2.74   | 6.84   | 19.13  | 42.98  | 100   | 2     |

<sup>\*1</sup> Load factor K<sub>A</sub>=1, n<sub>2</sub>=100 rpm ,at room temperature T=20°C in new condition
<sup>\*2</sup> Sound pressure level at 1 m distance, measured for an input speed of 3000 rpm without load
<sup>\*3</sup> On the center of the output shaft
<sup>\*4</sup> Deviation of up to 10 % possible
<sup>\*5</sup> Service life: 30,000 h, n<sub>2</sub>=100 rpm
<sup>\*6</sup> Max 1000 cycles per hour. Acceleration torque proportion < 5% of the total operation time</li>
<sup>\*7</sup> Max 1000 cycles over the gear service life
<sup>\*8</sup> Related to the input shaft

#### Planetary gears GFE • High-End Economy range

# Custom engineered planetary gears.

Individually designed for your application.



"Your idea – our drive": our drive solutions have set standards for numerous applications and sectors according to this motto. Our customers appreciate us as experienced development partners who deliver a technically and commercially convincing result. Many innovative special systems based on planetary gears have already been created in this way – for example our hub gearbox systems for the intralogistics sector.

You benefit from our experience: Because no application is so special that we would not have the right solution – whether a complete custom engineered new development or an easy adption of our standard planetary gears.

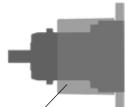


## Planetary gears and more - your application is our priority.

| Project development                                                                                                              | Application expertise                                                                                                                                                       | Systems competence                                                                                                                    | Quality assurance                                                                                                            | Depth of produc                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Based on your specifications, we<br>develop the optimum technical<br>and cost-effective solution<br>for the defined application. | We have already developed and<br>produced countless drive solutions<br>– from worm, spur or planetary<br>gears to complex drive systems –<br>for a variety of applications. | You benefit from our experience<br>gained from the technical imple-<br>mentation of drive solutions for<br>many different industries. | We ensure reproducible results at<br>the highest quality level by means<br>of inline measurements and visual<br>inspections. | Turning, milling, gea<br>squaring up, counte<br>hardening, grinding<br>produce all compor<br>the individual gearv<br>the complete drive,<br>workshops. |
|                                                                                                                                  |                                                                                                                                                                             |                                                                                                                                       |                                                                                                                              |                                                                                                                                                        |

# Framo Morat – your engineering partner with systems competence:

- Individual choice of material, diameter, mounting, tooth width, etc. for each planetary stage
- Perfect linkage at every interface
- Integration of the drive in your complete system, taking into account mechanics, electronics and control technology


#### Hub gearbox systems

Planetary gears with taper roller bearings are frequently used in applications in which high radial loads occur. With its longtime experience in gear and drive engineering, Framo Morat has developed a hub drive system based on a standard planetary gear. The custom design, which permits higher radial loads, reduces the total length of the gearbox by more than 40%. The use of standardized ball bearings contributes to cost-effectiveness.

The wheel hub drive is based on a planetary gear with a 40 mm diameter and a gear ratio of 5:1. Taking account of the application-specific loads and requirements, as well as the desired gearbox ratios, almost all standard planetary gears can be used for such a drive system.

The efficient and compact wheel hub drive is used in numerous intralogistics applications, for example in warehouse shuttle systems or automated guided vehicles (AGV).





Length of the hub based gear reduced by more than 40%.

#### luction

gear cutting, untersinking, ling – we uponents, from earwheel to ive, in our own



#### Serial production

After successful quality inspections, we mount the components in separate assembly cells – ready for delivery.



# Customer-specific planetary gears.

Individualized design for your requirements.

There are many ways to influence the technical and economical properties of a gearbox. It is here that an old engineering rule of thumb applies: "Not as good as possible, but as good as is necessary!" At Framo Morat, we have been working in accordance with this motto for decades when it comes to designing and developing individual drive solutions.

Gear types, materials, bearings, lubricants and, not least, the installation dimensions are essential factors with which the performance data of the planetary gears can be adapted to the respective application requirement profiles. The options given here serve as an overview of the different adjusting screws and their effects.

In the design of your customized planetary gear, you will benefit from our expertise in gear technology, our know-how in combination with tried-and-tested materials, as well as our decades-long experience in developing customer-specific drive solutions. We would be glad to speak with you. Contact us directly with any wishes or requests.

Phone +49 7657 88-173 • e-mail pe@framo-morat.com

## Gearing

#### Spur gearing

+ Cost-effective use for moderate noise emission and operational behavior requirements

#### Precision ground spur gearing

- + Optimized operational noise
- + Improved operational behavior

#### Helical gearing

- + Higher torque transfer
- + Improved operational behavior

## Gearbox installation dimensions, levels, and gear ratios

Common gear diameters to 155 mm + Field-tested gear teeth Alternative sizes to 250 mm + Optimal installation space Gear stages: 1-stage, 2-stage, 3-stage, 4-stage

Common gear ratios per planetary carrier 3:1 to 10:1 any overall gear ratio is possible

## Planetary gear bearing

#### Pin cage

- + Standardized components
- Fully acicular planetary gear bearing
- + Higher torques can be transmitted
- + Improved gear service life

#### Sliding bearing

+ Simplified gear structure

## Input shaft

#### Hollow shaft with optional reduction sleeve

Hollow shaft fitted to motor shaft

+ Omission of reduction sleeve

#### Direct connection to motor

- + Omission of hollow input shaft
- + Improved operational behavior

## Gear material

#### Case-hardened and tempered steel

- + Precision ground surface material possible
- Non-ferrous metals

#### Plastic

- + Optimized operational noise during lower torques
- + Using injection molding, low unit costs possible with high quantities

## Output flange

B14 flange connection B5 flange connection Customized flange

## Output shaft

Output shaft with feather key groove Output shaft without feather key groove + Clamp with lower circumferential backlash possible Output shaft as hollow shaft + Improved connection of shafts as a counterpart Output shaft as robot flange + Optimized torsional rigidity Output using internal geared wheel + More compact design

# Bearing on the input and output sides

Deep grooved ball bearing + Cost-effective and sufficient for moderate loads

Taper roller bearing
+ Higher axial and radial loads possible
Simple bearing
+ For separate output shaft bearing only one bearing

## Lubrication

may be necessary

Synthetic fluid grease + No relubrication necessary Food-grade grease + Particularly usable in the food industry Low temperature-grade grease + For very low outdoor and operating temperatures Oil + Increased degree of efficiency

# Custom engineered planetary gears in use.

The driving force in many sectors.

#### Underwater unwinding systems for swimming pools

Unwinding systems for pool covers are installed underwater and must therefore be absolutely watertight for years to come. For this demanding application, Framo Morat developed a special tubular motor that is doubly sealed using AQUASEAL technology and thus offers long-term corrosion resistance and is maintenance-free. The integrated 3-stage planetary gears consist of differing materials and supply a transmission of 1000:1 with an output torque of 300 Nm.



#### **Application examples**







#### Curved stair lifts

A substantial component of a curved stairlift's main drive is the planetary gear. It is built to be much more compact than other gearbox variants due to its coaxial design. Another advantage is that the aesthetics and the noise behavior of the system are improved. In fast-rotating gearbox stages, gear parts made from technical thermoplastics are used for noise reduction, while steel components are used in slowly rotating but powerfully loaded stages.



#### Conveyor systems

Planetary gears are an indispensable element in drum motors for conveyor belts and rollers. The selection of 2-stage planetary gears made of plastic was mainly influenced by the need to keep noise generation as low as possible. The conveyors are driven forward by means of the friction between the drum motor and the belt.



#### Machine construction

Planetary gears that are used in machine construction must meet maximum demands regarding precision and durability. Three single-stage planetary gears with a transmission of 7:1 directly connected to three hydraulic motors turn the rollers in sheet-metal bending machines.



#### Application examples



#### Automated guided vehicles (AGV)

Customer-specific planetary gears are frequently used in automated guided vehicles (AGV) - whether in intra-logistics, medical device technology or agricultural technology. The gearboxes are used in wheel hub drives, as they enable a compact design in narrow spaces. The three-stage planetary gears with optimized bearings reach a high output torque of up to 300 Nm and a radial load of up to 12 kN.



#### Mobile satellite receivers

Positioning accuracy is a basic requirement for mobile satellites, especially for receiver systems. This two-stage planetary gear from Framo Morat uses the gear's internal tension to reduce the circumferential backlash of the entire system. High quality signals can be received through manual control adjustments in the form of micromovements.





#### High ratio gearbox systems for valve adjustments

Transmissions that have high gear ratios often take up a lot of space—especially with coaxial variants. In order to reduce installation space while at the same time operating at the required gear ratios, Framo Morat combines a worm gear stage and a planetary stage in a single gearbox. Thanks to the modular system and the high power density of the planetary gearbox series, as well as decades of experience in the manufacture of standard worm gear sets, Framo Morat offers a fast and low-cost solution. For medium to large quantities, complete custom designs and developments are also employed.

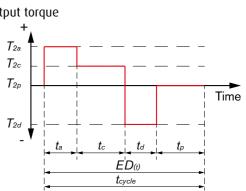






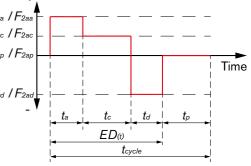
#### Tracking drive for mirror reflectors

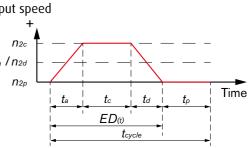
This custom engineered drive is used to enable the tracking of mirror reflectors. During its development, great attention was paid to achieving minimum backlash and maximum torque. The drive achieves a maximum output torque of 5.000 Nm and consists of a servomotor, a 3-stage planetary gear, a worm gear, a position tracking system and two adapter plates.

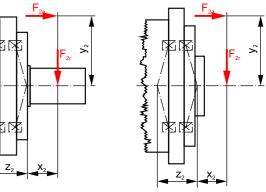

A single drive moves a total mirror area of 330 m<sup>2</sup>. One special aspect of this development was the adapted size of the various planetary gear stages. The planetary gears achieve a transmission of 729:1.

| ansmission ratio  |                          | Unit   | Formula                                                   | Legend                                                                                                                                                         | Explanation                                                                                                                                                                                        |
|-------------------|--------------------------|--------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |                          |        | $i = \frac{n_{1(A)}}{n_{2(A)}}$                           | i = transmission ratio                                                                                                                                         |                                                                                                                                                                                                    |
| beed              |                          | Unit   | Formula                                                   | Legend                                                                                                                                                         | Explanation                                                                                                                                                                                        |
|                   | Output speed             | rpm    | $n_{2(A)} = \frac{n_{1(A)}}{i}$                           | n <sub>2</sub> = Output speed                                                                                                                                  |                                                                                                                                                                                                    |
|                   |                          | rpm    | $n_{\tau(A)} = n_{2(A)} \cdot i$                          | n, = Input speed                                                                                                                                               |                                                                                                                                                                                                    |
|                   | Input speed              | rpm    | $n_1 \ge n_{1(A)}$                                        | n <sub>1 max</sub> = max. Input speed                                                                                                                          |                                                                                                                                                                                                    |
|                   |                          | rpm    | $n_{1max.} \ge n_{1(A)max.}$                              |                                                                                                                                                                |                                                                                                                                                                                                    |
| rque              |                          | Unit   | Formula                                                   | Legend                                                                                                                                                         | Explanation                                                                                                                                                                                        |
|                   | Nominal output torque    | Nm     | $T_{2N} \geq T_{2N(A)} oldsymbol{\cdot} \eta$             | T <sub>2N</sub> = Nominal output torque                                                                                                                        | Load factor $K_A$ (Standard = 1.0)DriveLoad type of the driven machinesteadymedium shockssteady1.01.251.75medium shocks1.251.52.0heavy shocks1.51.752.25                                           |
|                   | Max. acceleration torque | Nm     | $T_{2B} \geq T_{2B(A)} \bullet K_a \bullet b_B \bullet S$ | T <sub>2B</sub> = Max. acceleration torque                                                                                                                     | Operational ratio $b_B$ (Standard = 1.0)Operational time4-8 h8-12 h>=12hOperational time factor1.001.201.35                                                                                        |
|                   | Emergency stop torque    | Nm     | $T_{	ext{2NOT}} \geq T_{	ext{2max}(	ext{A})} ullet \eta$  | $T_{2 \text{ NOT}}$ = Emergency stop torque                                                                                                                    | S (Standard = 1.0)<br>$\eta$ = see power tables                                                                                                                                                    |
| peration mode / I | Duty cycle               | Unit   | Formula                                                   | Legend                                                                                                                                                         | Explanation                                                                                                                                                                                        |
|                   | Operation mode           |        | S1 or S5                                                  | $\rm S_{t}:$ Continuous operation: ED > 60% and ED > 20 min $\rm S_{g}:$ Cyclic operation: ED <= 60% and ED <= 20 min                                          |                                                                                                                                                                                                    |
|                   |                          | min    | $ED(t) = t_a + t_c + t_{d(min)}$                          | $t_{b^1} t_{c^1} t_{d^1} t_{a} = Cyle times see table page 47$                                                                                                 |                                                                                                                                                                                                    |
|                   | Duty cycle               |        |                                                           | ED (t) = Duty cycle in min                                                                                                                                     |                                                                                                                                                                                                    |
|                   |                          | %      | $ED(\%) = \frac{ED_{(t)}}{ED_{(t)} + t_e} \cdot 100(\%)$  | ED (%) = Duty cycle in %                                                                                                                                       |                                                                                                                                                                                                    |
| acklash           |                          | Unit   | Formula                                                   | Legend                                                                                                                                                         | Explanation                                                                                                                                                                                        |
|                   |                          | arcmin | $j_t \leq j_{t(A)}$                                       | $\label{eq:constraint} \begin{split} \boldsymbol{j}_t &= \text{Backlash} \\ \boldsymbol{j}_{t(A)} &= \text{Backlash of your application} \end{split}$          |                                                                                                                                                                                                    |
| loise             |                          | Unit   | Formula                                                   | Legend                                                                                                                                                         | Explanation                                                                                                                                                                                        |
|                   |                          | dB (A) | $Q_{g}\leq Q_{g(A)}$                                      | $Q_g$ = Noise level<br>$Q_{g(A)}$ = Noise level of your application                                                                                            |                                                                                                                                                                                                    |
| Notor             |                          | Unit   | Formula                                                   | Legend                                                                                                                                                         | Explanation                                                                                                                                                                                        |
|                   |                          | Nm     | $T_{2B} \geq T_{mB} \cdot i \cdot \eta \cdot K_S$         | T <sub>mB</sub> = Motor-acceleration torque<br>Compare motor shaft diameter with<br>input hollow shaft diameter<br>Exception: PL line (< motor shaft diameter) | Service factor $K_s$ (Standard = 1.0) $K_s$ No. of cycles / h           1.0         0 - 1000           1.1         1000 - 1500           1.3         1500 - 2000           1.6         2000 - 3000 |

Configuration guide

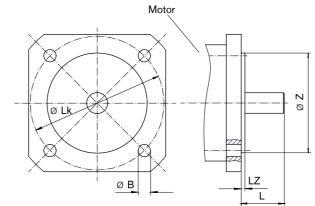

| 8. Loads     | Unit       | Formula                                                                                                                                                                                                                                                                                                                                                                                                          | Legend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Max. radia   | al force N | $F_{2^{*}} \leq F_{2m(A)} = \sqrt[3]{\frac{n_{2a} \cdot t_{a} \cdot F_{2n}^{3} + n_{2c} \cdot t_{c} \cdot F_{2n}^{3} + n_{2d} \cdot t_{d} \cdot F_{2n}^{3}}{n_{2a} \cdot t_{a} + n_{2c} \cdot t_{c} + n_{2d} \cdot t_{d}}}$                                                                                                                                                                                      | $F_{r} = \text{Radial force}$ $F_{2rm} = \text{Average radial force}$ $F_{2rm} = \text{Average radial force}$ $F_{2rm(A)} = \text{Max. radial force}$ $F_{2rc} = \text{Acceleration radial force}$ $F_{2rd} = \text{Deceleration radial force}$ $t_{a} = \text{Acceleration time}$ $t_{c} = \text{Holding time}$ $t_{d} = \text{Deceleration output speed}$ $n_{2rd} = \text{Average acceleration output speed}$ $n_{2rd} = \text{Average deceleration output speed}$ $n_{2rd} = \text{Average deceleration output speed}$ $n_{2rd} = \text{Average deceleration output speed}$ $n_{2rd} = \text{Pause} = 0$ $t_{p} = \text{Pause} = 0$ $F_{2rp} = \text{Pause} = 0$ | Output<br>and the second |
| Max. axial   | I force N  | $F_{2a} \leq F_{2am(A)} = \sqrt[3]{\frac{n_{2a} \cdot t_s \cdot F_{2aa}^3 + n_{2c} \cdot t_c \cdot F_{2ac}^3 + n_{2d} \cdot t_d \cdot F_{2ad}^3}{n_{2a} \cdot t_s + n_{2c} \cdot t_c + n_{2d} \cdot t_d}}$                                                                                                                                                                                                       | $\begin{split} F_{a} &= \text{Axial force} \\ F_{2am} &= \text{Average axial force} \\ F_{2am} &= \text{Average axial force} \\ F_{2am} &= \text{Acceleration axial force} \\ F_{2am} &= \text{Holding axial force} \\ F_{2am} &= \text{Holding axial force} \\ F_{2am} &= \text{Deceleration axial force} \\ t_{a} &= \text{Acceleration time} \\ t_{c} &= \text{Holding time} \\ t_{d} &= \text{Deceleration time} \\ n_{2a} &= \text{Average acceleration output speed} \\ n_{2d} &= \text{Average deceleration output speed} \\ n_{2d} &= \text{Pause} = 0 \\ t_{p} &= \text{Pause} = 0 \\ F_{2p} &= \text{Pause} = 0 \\ F_{2p} &= \text{Pause} = 0 \\ F_{2p} &= \text{Pause} = 0 \\ t_{pcle} &= \text{Cycle time} \\ \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 9. Life time | Unit       | Formula                                                                                                                                                                                                                                                                                                                                                                                                          | Legend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              | h          | The service life of the gears depends on many different factors. Specifically, the service life can be defined through two different methods of calculation: Tooth system service life and bearing service life.<br>Speed, gear ratio and torque are especially important influencing factors.<br>The lower the output speed, the higher the service life.<br>The lower the torque, the higher the service life. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |


#### Explanation

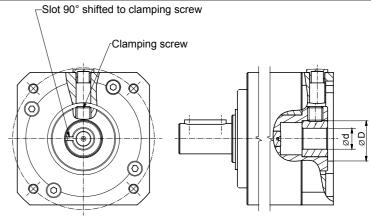



ds on output shaft

+






Explanation

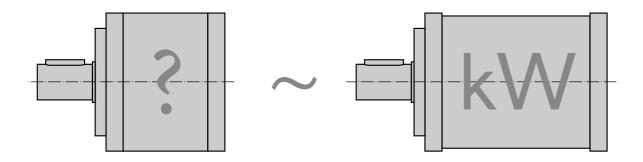








## Definition of serial number


|                   |          | Internal<br>Group No. |   | Туре | Size |   | Input hollow<br>shaft diam. |   | Motor shaft<br>diam. | Counting  |
|-------------------|----------|-----------------------|---|------|------|---|-----------------------------|---|----------------------|-----------|
|                   | G-series | 3                     | - | G    |      | - | 035                         | - | 028                  |           |
| Reduction sleeves | G-series | 3                     | - | G    |      | - | 019                         | - | 014                  | 000 - 071 |

| Gearbox type | Size | Stages | Internal diam.<br>D | Motor shaft diameter d in mm |   |          |                       |                       |          |                       |          |                       |                       |                       |                       |                       |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |     |
|--------------|------|--------|---------------------|------------------------------|---|----------|-----------------------|-----------------------|----------|-----------------------|----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|-----|
|              |      | Stuges |                     | 6                            | 8 | 9        | 10                    | 11                    | 12       | 12.7                  | 14       | 16                    | 19                    | 22                    | 24                    | 28                    | 32                    | 35                    | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 42 | 48  | 55  |
| GSD          | 47   | 1/2    | 11                  | ~                            | ~ | ~        |                       | (•)                   |          |                       |          |                       |                       |                       |                       |                       |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |     |
|              |      | 1      | 19                  |                              |   |          | ~                     | ~                     | ~        | <b>√</b>              | ~        | ~                     | (•)                   |                       |                       |                       |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |     |
|              | 64   | 2      | 14                  | ~                            | ✓ | ✓        | <b>v</b>              | <b>v</b>              | <b>√</b> | <ul> <li>✓</li> </ul> | (√)      |                       |                       |                       |                       |                       |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |     |
|              | 90   | 1      | 24                  |                              |   |          |                       |                       |          |                       | ~        | ~                     | ~                     | ~                     | (•)                   |                       |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |     |
| GSD          | 90   | 2      | 19                  |                              |   |          | ~                     | ~                     | ~        | <b>v</b>              | ~        | <b>√</b>              | (•)                   |                       |                       |                       |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |     |
|              | 110  | 1      | 28                  |                              |   |          |                       |                       |          |                       |          |                       | ✓                     | <ul> <li>✓</li> </ul> | <b>√</b>              | (√)                   | (√)*                  | (√)*                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |     |
|              | 110  | 2      | 24                  |                              |   |          |                       |                       |          |                       | ~        | <b>√</b>              | ✓                     | <b>√</b>              | (•)                   |                       |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |     |
|              | 140  | 1      | 38                  |                              |   |          |                       |                       |          |                       |          |                       |                       |                       |                       |                       | ~                     | ~                     | (√)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |     |     |
|              | 140  | 2      | 35                  |                              |   |          |                       |                       |          |                       |          |                       |                       |                       | ✓                     | <b>√</b>              | <ul> <li>✓</li> </ul> | (•)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |     |
| GSB / GSBL   | 44   | 1/2    | 11                  | ~                            | ✓ | <b>√</b> |                       | (√)                   |          |                       |          |                       |                       |                       |                       |                       |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |     |
|              | 62   | 1      | 19                  |                              |   |          | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | ~        | <ul> <li>✓</li> </ul> | <b>√</b> | <ul> <li>✓</li> </ul> | (•)                   |                       |                       |                       |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |     |
|              | 02   | 2      | 11                  | ~                            | ~ | ~        |                       | (√)                   |          |                       |          |                       |                       |                       |                       |                       |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |     |
|              | 90   | 1      | 24                  |                              |   |          |                       |                       |          |                       | <b>√</b> | ✓                     | <ul> <li>✓</li> </ul> | ✓                     | (•)                   |                       |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |     |
|              |      | 2      | 19                  |                              |   |          | ✓                     | <b>√</b>              | ~        | <ul> <li>✓</li> </ul> | ~        | ✓                     | (•)                   |                       |                       |                       |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |     |
|              | 120  | 1      | 28                  |                              |   |          |                       |                       |          |                       |          |                       | <ul> <li>✓</li> </ul> | ✓                     | <b>√</b>              | (•)                   | (√)*                  | (√)*                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |     |
|              | 120  | 2      | 24                  |                              |   |          |                       |                       |          |                       | ~        | ✓                     | ✓                     | ✓                     | (√)                   |                       |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |     |
|              | 142  | 1      | 35                  |                              |   |          |                       |                       |          |                       |          |                       |                       |                       | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | ✓                     | (•)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |     |
|              | 142  | 2      | 28                  |                              |   |          |                       |                       |          |                       |          |                       | <ul> <li>✓</li> </ul> | ✓                     | ✓                     | (•)                   | (√)*                  | (√)*                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |     |
|              | 180  | 1      | 55                  |                              |   |          |                       |                       |          |                       |          |                       |                       |                       |                       |                       |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     | (√) |
|              | 100  | 2      | 35                  |                              |   |          |                       |                       |          |                       |          |                       |                       |                       | ✓                     | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | (•)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |     |
|              | 60   | 1/2    | 14                  | ~                            | ✓ | ✓        | ✓                     | <b>√</b>              | ✓        | <ul> <li>✓</li> </ul> | (√)      |                       |                       |                       |                       |                       |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |     |
| GSN          | 80   | 1/2    | 19                  |                              |   |          | ✓                     | ✓                     | ✓        | <ul> <li>✓</li> </ul> | ✓        | <ul> <li>✓</li> </ul> | (•)                   |                       |                       |                       |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |     |
|              | 115  | 1/2    | 24                  |                              |   |          |                       |                       |          |                       | ✓        | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | (√)                   |                       |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |     |
|              | 50   | 1/2    | 11                  | ~                            | ✓ | ✓        |                       | (√)                   |          |                       |          |                       |                       |                       |                       |                       |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |     |
|              | 70   | 1/2    | 19                  |                              |   |          | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | ✓        | <ul> <li>✓</li> </ul> | ✓        | <ul> <li>✓</li> </ul> | (√)                   |                       |                       |                       |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |     |
|              | 90   | 1/2    | 24                  |                              |   |          |                       |                       |          |                       | ~        | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | (•)                   |                       |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |     |
| GFE          | 120  | 1/2    | 28                  |                              |   |          |                       |                       |          |                       |          |                       | <ul> <li>✓</li> </ul> | ~                     | <ul> <li>✓</li> </ul> | (√)                   | (√)*                  | (√)*                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |     |
| -<br>55N -   | 145  | 1/2    | 38                  |                              |   |          |                       |                       |          |                       |          |                       |                       |                       |                       |                       | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | (√)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |     |     |
|              | 180  | 1/2    | 48                  |                              |   |          |                       |                       |          |                       |          |                       |                       |                       |                       |                       |                       |                       | ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         ·           ·         · | ~  | (√) |     |
|              | 220  | 1/2    | 55                  |                              |   |          |                       |                       |          |                       |          |                       |                       |                       |                       |                       |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     | (✔) |

✓ = Reduction sleeve available; (✓) = no reduction sleeve necessary;
 (✓)\* = Possible as a specially designed model. Further diameters can also be provided. Please contact us directly.

## Definition of serial number

|                                                       |                |                      | Internal Group No.    |        | Туре                    | Size | Center diam.            |     | Counting           |  |
|-------------------------------------------------------|----------------|----------------------|-----------------------|--------|-------------------------|------|-------------------------|-----|--------------------|--|
|                                                       | G              | -series              | 3                     | -      | G                       | 090  | - 090                   | -   | 001                |  |
| Notorflanges                                          | G              | -series              | 3                     | -      | G                       | 120  | - 110                   |     | 003                |  |
| Gearboxes                                             | Article - No.  | Center diameter<br>Z | Bore hole diam.<br>LK | Max. o | Max. center depth<br>LZ |      | motor shaft length<br>L | Mo  | unting thread<br>B |  |
| GSD047                                                | 3-G044-030-001 | 30                   | 46                    |        | 4                       |      | 25                      |     | M4                 |  |
| GSD064 2st.                                           | 3-G044-040-002 | 40                   | 63                    |        | 4                       |      | 25                      |     | M4                 |  |
| GSB044<br>GSB062 2st.                                 | 3-G044-050-002 | 50                   | 70                    |        | 3                       |      | 25                      |     | M5                 |  |
| GSBL044                                               | 3-G044-050-004 | 50                   | 70                    |        | 3                       |      | 30                      |     | M4                 |  |
| GSBL062 2st.<br>GSN060<br>GFE050                      | 3-G044-060-001 | 60                   | 75                    |        | 4                       |      | 25                      |     | M5                 |  |
|                                                       | 3-G062-030-001 | 30                   | 46                    |        | 5                       |      | 30                      |     | M4                 |  |
|                                                       | 3-G062-050-001 | 50                   | 70                    |        | 5                       |      | 30                      | M5  |                    |  |
| GSD064 1st.                                           | 3-G062-050-002 | 50                   | 70                    |        | 5                       |      | 30                      | M4  |                    |  |
| GSD090 2st.                                           | 3-G062-050-004 | 50                   | 95                    | 5      |                         |      | 30                      | M6  |                    |  |
| GSB062 1st.<br>GSB090 2st.                            | 3-G062-060-001 | 60                   | 75                    | 5      |                         |      | 30                      | M6  |                    |  |
| GSBL062 1st.                                          | 3-G062-060-002 | 60                   | 75                    | 5      |                         |      | 30                      | M5  |                    |  |
| GSBL090 2st.<br>GFE070                                | 3-G062-070-002 | 70                   | 90                    | 5      |                         |      | 40                      | M6  |                    |  |
|                                                       | 3-G062-070-003 | 70                   | 90                    | 5      |                         |      | 30                      | M5  |                    |  |
|                                                       | 3-G062-080-001 | 80                   | 100                   | 5      |                         |      | 30                      | M6  |                    |  |
|                                                       | 3-G090-070-001 | 70                   | 90                    | 8      |                         |      | 50                      |     | M6                 |  |
|                                                       | 3-G090-070-002 | 70                   | 90                    |        | 8                       |      | 50                      |     | M5                 |  |
| GSD090 1st.                                           | 3-G090-080-001 | 80                   | 100                   | 8      |                         |      | 50                      |     | M6                 |  |
| GSD110 2st.<br>GSB090 1st.                            | 3-G090-095-002 | 95                   | 115                   | 8      |                         |      | 50                      | M8  |                    |  |
| GSB120 2st.                                           | 3-G090-095-003 | 95                   | 130                   | 8      |                         |      | 50                      | M8  |                    |  |
| GSBL090 1st.<br>GSBL120 2st.                          | 3-G090-095-006 | 95                   | 115                   | 13     |                         |      | 55                      | M8  |                    |  |
| GSN080                                                | 3-G090-110-001 | 1 10                 | 145                   | 8      |                         |      | 50                      | M8  |                    |  |
| GSN115<br>GFE090                                      | 3-G090-110-002 | 1 10                 | 145                   |        | 22                      |      | 65                      | M8  |                    |  |
|                                                       | 3-G090-110-003 | 1 10                 | 130                   | 8      |                         |      | 50                      | M8  |                    |  |
|                                                       | 3-G090-130-001 | 130                  | 165                   |        | 8                       |      | 50                      |     | M10                |  |
|                                                       | 3-G120-070-001 | 70                   | 90                    | 9      |                         |      | 63                      | M6  |                    |  |
| GSD110 1st.<br>GSD140 2st.                            | 3-G120-095-002 | 95                   | 115                   |        | 9                       |      | 63                      | M8  |                    |  |
| GSB120 1st.                                           | 3-G120-110-001 | 1 10                 | 145                   | 9      |                         |      | 63                      | M8  |                    |  |
| GSB142 2st.<br>GSBL120 1st.                           | 3-G120-110-003 | 1 10                 | 130                   | 9      |                         |      | 63                      |     | M8                 |  |
| GSBL142 2st.                                          | 3-G120-110-005 | 1 10                 | 165                   |        | 9                       |      | 63                      | M10 |                    |  |
| GFE120                                                | 3-G120-130-001 | 130                  | 165                   | 9      |                         |      | 63                      | M10 |                    |  |
| GSD140 1st.                                           | 3-G142-114-001 | 114.3                | 200                   |        | 8                       |      | 80                      |     | M12                |  |
| GSB142 1st.<br>GSB180 2st                             | 3-G142-180-001 | 180                  | 215                   | 8      |                         |      | 80                      | M12 |                    |  |
| GSB180 2st.<br>GSBL142 1st.<br>GSBL180 2st.<br>GFE145 | 3-G142-200-101 | 200                  | 235                   |        | 8                       |      | 80                      |     | M12                |  |
| GSB180 1st.                                           | 3-G180-114-001 | 114.3                | 200                   |        | 13                      |      | 115                     |     | M12                |  |
| GSBL180 1st.<br>GFE180                                | 3-G180-200-001 | 200                  | 235                   | 13     |                         |      | 115                     | M12 |                    |  |



# Gear selection based on performance data

| Gearbox type |      |        | Power in kW |     |                       |        |   |        |                       |          |        |        |        |        |        |          |  |
|--------------|------|--------|-------------|-----|-----------------------|--------|---|--------|-----------------------|----------|--------|--------|--------|--------|--------|----------|--|
|              | Size | Stages | 0.1         | 0.2 | 0.4                   | 0.75   | 1 | 1.5    | 2.2                   | 3.75     | 5.5    | 7.5    | 11     | 15     | 22     | 30       |  |
|              | 47   | 1/2    | ~           | ~   |                       |        |   |        |                       |          |        |        |        |        |        |          |  |
|              |      | 1      |             |     | ~                     | ~      |   |        |                       |          |        |        |        |        |        |          |  |
|              | 64   | 2      |             |     | ~                     | ~      |   |        |                       |          |        |        |        |        |        |          |  |
|              |      | 1      |             |     |                       | ~      | ~ | ~      |                       |          |        |        |        |        |        |          |  |
| GSD          | 90   | 2      |             |     |                       | ~      | ~ | ~      |                       |          |        |        |        |        |        |          |  |
|              |      | 1      |             |     |                       | 1      |   | ~      | <ul> <li>✓</li> </ul> | <b>√</b> |        |        |        |        |        |          |  |
|              | 1 10 | 2      |             |     |                       |        |   | ~      | <ul> <li>✓</li> </ul> | ~        |        |        |        |        |        |          |  |
|              |      | 1      |             |     |                       |        |   |        | ~                     | ~        | ~      |        |        |        |        |          |  |
|              | 140  | 2      |             |     |                       |        |   |        | ~                     | ~        | ~      |        |        |        |        |          |  |
|              | 44   | 1/2    | ~           | ~   |                       |        |   |        |                       |          |        |        |        |        |        |          |  |
|              |      | 1      |             |     | ~                     | ~      |   |        |                       |          |        |        |        |        |        |          |  |
|              | 62   | 2      |             |     | ~                     |        |   |        |                       |          |        |        |        |        |        | <u> </u> |  |
|              |      | 1      |             |     |                       | ~      | ~ | ~      |                       |          |        |        |        |        |        |          |  |
|              | 90   | 2      |             |     | ~                     | ~      |   |        |                       |          |        |        |        |        |        |          |  |
| GSB / GSBL   |      | 1      |             |     |                       |        |   | ~      | ~                     | ~        |        |        |        |        |        |          |  |
|              | 120  | 2      |             |     |                       | ~      | ~ | ~      |                       |          |        |        |        |        |        |          |  |
|              |      | 1      |             |     |                       |        |   |        | ~                     | ~        | ~      |        |        |        |        |          |  |
|              | 142  | 2      |             |     |                       |        |   | ~      | <ul> <li>✓</li> </ul> | ~        |        |        |        |        |        |          |  |
|              |      | 1      |             |     |                       |        |   |        | -                     |          | ~      | ~      | ~      | ~      | ~      | ~        |  |
|              | 180  | 2      |             |     |                       |        |   |        |                       |          | ~      | ~      | ~      | ✓      | ~      |          |  |
|              | 60   | 1/2    | ~           | ~   | ~                     |        |   |        |                       |          |        |        |        |        |        |          |  |
| GSN          | 80   | 1/2    |             |     | <ul> <li>✓</li> </ul> | ~      |   |        |                       |          |        |        |        |        |        |          |  |
|              | 115  | 1/2    |             |     |                       | ✓      | ~ | ~      |                       |          |        |        |        |        |        |          |  |
|              | 50   | 1/2    | ~           | ~   |                       |        |   |        |                       |          |        |        |        |        |        |          |  |
|              | 70   | 1/2    |             |     | ~                     | ~      |   |        |                       |          |        |        |        |        |        |          |  |
| GFE          | 90   | 1/2    |             |     |                       | ·<br>· | ~ | ~      |                       |          |        |        |        |        |        |          |  |
|              | 120  | 1/2    |             |     |                       |        |   | ·<br>✓ | <b>√</b>              | ~        |        |        |        |        |        |          |  |
|              | 145  | 1/2    |             |     |                       |        |   |        |                       | ✓        | ~      | ~      |        |        |        |          |  |
|              | 180  | 1/2    |             |     |                       |        |   |        |                       |          | ✓<br>✓ | v<br>√ | ~      | ~      | ~      |          |  |
|              | 220  | 1/2    |             |     |                       |        |   |        |                       |          | •      | -      | ▼<br>▼ | ▼<br>▼ | ▼<br>▼ | ~        |  |

The table displays guidelines for a simplified preselection. The actual selection of the motor is to be carried out on the basis of the required gear output torque.

# Your idea – Our drive.

For us, everything revolves around you.



With 100+ years of experience in the areas of gearwheel technology, worm gear sets and drive systems, Framo Morat supplies a comprehensive range of products that cover a wide spectrum of applications. In addition to our complete range of standard products, we also design and implement custom engineered drive solutions.

Framo Morat is your reliable partner for worm, spur or planetary gears; complete gearmotors; and complex drive systems – and for your drive concept too!

#### Gear technology

Gearwheels with internal or external tooth systems, rotor shafts, pinions and chain pulleys according to individual customer requirements.

#### Worm gear sets

Framo Morat is a leading international supplier – manufacturing over 1 million gear sets a year, a major proportion of which are produced to customer specifications.

#### Plastic injection molding technology

In the field of precision injection molding technology, we produce gear parts, plastic/metal connections or technical parts for individual tasks.

#### Drive technology

Our innovative standard drives such as planetary gears, linear or rotary actuators, as well as complete custom engineered drive solutions, are in use in numerous applications.

# Framo Morat GmbH & Co. KG Franz-Morat-Str. 6 79871 Eiserback Germany Phone +49 7657 88-0 Fax +49 7657 88-333 F-Mail info@framo-morat.com

www.framo-morat.com

